Pomegranate peel mediated silver nanoparticles: antimicrobial action against crop pathogens, antioxidant potential and cytotoxicity assay.

Jyoti Rani, Sushila Singh, Anuradha Beniwal, Simran Kakkar, Monika Moond, Seema Sangwan, Sachin Kumari
Author Information
  1. Jyoti Rani: Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India.
  2. Sushila Singh: Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India. singhsushila999@gmail.com.
  3. Anuradha Beniwal: Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India.
  4. Simran Kakkar: Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India.
  5. Monika Moond: Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India.
  6. Seema Sangwan: Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India.
  7. Sachin Kumari: Department of Chemistry, CCS Haryana Agricultural University, Hisar, 125004, India.

Abstract

Biologically produced silver nanoparticles are becoming a more appealing option than chemically produced antioxidants and antimicrobial agents, because they are safer, easier to manufacture and have medicinal properties at lower concentrations. In this work, we employed the aqueous pomegranate peel extract (PPE) to synthesize silver nanoparticles (PPE-AgNPs), as peel extract is a rich source of phytochemicals which functions as reducing agent for the synthesis of PPE-AgNPs. Additionally, the PPE was examined quantitatively for total phenolics and total flavonoids content. PPE-AgNPs were characterized using analytical techniques including UV-Vis spectroscopy, DLS, FTIR, XRD, HRTEM and FESEM, evaluated in vitro against the plant pathogenic microbes and also for antioxidant activities. Analytical techniques (HRTEM and FESEM) confirmed the spherical shape and XRD technique revealed the crystalline nature of synthesized PPE-AgNPs. Quantitative analysis revealed the presence of total phenolics (269.93 ± 1.01 mg GAE/g) and total flavonoids (119.70 ± 0.83 mg CE/g). Biosynthesized PPE-AgNPs exhibited significant antibacterial activity against Klebsiella aerogenes and Xanthomonas axonopodis, antifungal activity against Colletotrichum graminicola and Colletotrichum gloesporioides at 50 µg/mL concentration. The antioxidant potential of biosynthesized PPE-AgNPs was analysed via ABTS (IC 4.25 µg/mL), DPPH (IC 5.22 µg/mL), total antioxidant (86.68 g AAE/mL at 10 µg/mL) and FRAP (1.93 mM Fe(II)/mL at 10 µg/mL) assays. Cytotoxicity of PPE-AgNPs was valuated using MTT assay and cell viability of 83.32% was determined at 100 µg/mL concentration. These investigations suggest that synthesized PPE-AgNPs might prove useful for agricultural and medicinal purposes in the future.

Keywords

References

  1. Plant Pathol J. 2024 Feb;40(1):48-58 [PMID: 38326958]
  2. J Photochem Photobiol B. 2018 Apr;181:53-58 [PMID: 29501725]
  3. Nanomaterials (Basel). 2020 Sep 07;10(9): [PMID: 32906575]
  4. Int J Mol Sci. 2023 Feb 09;24(4): [PMID: 36834889]
  5. Antibiotics (Basel). 2018 Jun 26;7(3): [PMID: 29949885]
  6. Molecules. 2021 Apr 23;26(9): [PMID: 33922577]
  7. Biochem Biophys Res Commun. 2023 Jun 4;659:91-95 [PMID: 37054507]
  8. Chem Pharm Bull (Tokyo). 1988 Jun;36(6):2090-7 [PMID: 3240445]
  9. Front Nutr. 2022 Jan 24;8:807447 [PMID: 35141267]
  10. Food Chem. 2018 Sep 30;261:75-86 [PMID: 29739608]
  11. Mater Sci Eng C Mater Biol Appl. 2020 Jul;112:110901 [PMID: 32409057]
  12. Food Chem. 2021 Oct 15;359:129912 [PMID: 33934027]
  13. Nanomaterials (Basel). 2020 Jul 25;10(8): [PMID: 32722404]
  14. Sci Rep. 2023 Nov 9;13(1):19469 [PMID: 37945578]
  15. Saudi J Biol Sci. 2021 Aug;28(8):4191-4200 [PMID: 34354399]
  16. Heliyon. 2020 Nov 03;6(11):e05413 [PMID: 33195844]
  17. Foods. 2021 Mar 19;10(3): [PMID: 33808709]
  18. Bioprocess Biosyst Eng. 2018 Jan;41(1):1-20 [PMID: 28965140]
  19. Mol Biol Evol. 2022 Sep 1;39(9): [PMID: 35975687]
  20. Sci Rep. 2021 Mar 16;11(1):5996 [PMID: 33727607]
  21. Front Microbiol. 2016 Nov 16;7:1831 [PMID: 27899918]
  22. Food Chem Toxicol. 2013 Jan;51:1-14 [PMID: 22975145]
  23. Molecules. 2023 Jan 18;28(3): [PMID: 36770623]
  24. Environ Sci Pollut Res Int. 2018 Apr;25(11):10392-10406 [PMID: 28699009]
  25. Anal Biochem. 1999 May 1;269(2):337-41 [PMID: 10222007]
  26. Free Radic Biol Med. 1999 May;26(9-10):1231-7 [PMID: 10381194]
  27. Materials (Basel). 2024 May 10;17(10): [PMID: 38793321]
  28. J Food Sci Technol. 2017 Aug;54(9):2890-2901 [PMID: 28928529]
  29. Theor Appl Genet. 2006 Dec;114(1):187-92 [PMID: 17063339]
  30. Biochem Res Int. 2015;2015:175950 [PMID: 26557995]
  31. Plants (Basel). 2021 Nov 02;10(11): [PMID: 34834726]
  32. Int J Nanomedicine. 2019 Jan 18;14:667-687 [PMID: 30705586]
  33. Nanoscale Res Lett. 2018 Oct 4;13(1):315 [PMID: 30288618]
  34. Int J Pharm. 2023 Aug 25;643:123223 [PMID: 37442399]

Word Cloud

Created with Highcharts 10.0.0PPE-AgNPstotalpeelantioxidantsilvernanoparticlesproducedantimicrobialmedicinalextractPPEphenolicsflavonoidsusingtechniquesXRDHRTEMFESEMrevealedsynthesizedactivityColletotrichumconcentrationpotentialIC10 µg/mLCytotoxicityassayPomegranateBiologicallybecomingappealingoptionchemicallyantioxidantsagentssafereasiermanufacturepropertieslowerconcentrationsworkemployedaqueouspomegranatesynthesizerichsourcephytochemicalsfunctionsreducingagentsynthesisAdditionallyexaminedquantitativelycontentcharacterizedanalyticalincludingUV-VisspectroscopyDLSFTIRevaluatedvitroplantpathogenicmicrobesalsoactivitiesAnalyticalconfirmedsphericalshapetechniquecrystallinenatureQuantitativeanalysispresence26993 ± 101 mgGAE/g11970 ± 083 mgCE/gBiosynthesizedexhibitedsignificantantibacterialKlebsiellaaerogenesXanthomonasaxonopodisantifungalgraminicolagloesporioides50 µg/mLbiosynthesizedanalysedviaABTS425 µg/mLDPPH522 µg/mL8668 gAAE/mLFRAP193 mMFeII/mLassaysvaluatedMTTcellviability8332%determined100 µg/mLinvestigationssuggestmightproveusefulagriculturalpurposesfuturemediatednanoparticles:actioncroppathogenscytotoxicityAntimicrobialAntioxidantSilver

Similar Articles

Cited By