Genetic improvement and genomic resources of important cyprinid species: status and future perspectives for sustainable production.

Kiran D Rasal, Pokanti Vinay Kumar, Shasti Risha, Prachi Asgolkar, M Harshavarthini, Arpit Acharya, Siba Shinde, Siyag Dhere, Avinash Rasal, Arvind Sonwane, Manoj Brahmane, Jitendra K Sundaray, Naresh Nagpure
Author Information
  1. Kiran D Rasal: ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India.
  2. Pokanti Vinay Kumar: ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India.
  3. Shasti Risha: ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India.
  4. Prachi Asgolkar: ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India.
  5. M Harshavarthini: ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India.
  6. Arpit Acharya: ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India.
  7. Siba Shinde: ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India.
  8. Siyag Dhere: ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India.
  9. Avinash Rasal: ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India.
  10. Arvind Sonwane: ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India.
  11. Manoj Brahmane: ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India.
  12. Jitendra K Sundaray: ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India.
  13. Naresh Nagpure: ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India.

Abstract

Cyprinid species are the most cultured aquatic species around the world in terms of quantity and total value. They account for 25% of global aquaculture production and significantly contribute to fulfilling the demand for fish food. The aquaculture of these species is facing severe concerns in terms of seed quality, rising feed costs, disease outbreaks, introgression of exotic species, environmental impacts, and anthropogenic activities. Numerous researchers have explored biological issues and potential methods to enhance cyprinid aquaculture. Selective breeding is extensively employed in cyprinid species to enhance specific traits like growth and disease resistance. In this context, we have discussed the efforts made to improve important cyprinid aquaculture practices through genetic and genomic approaches. The recent advances in DNA sequencing technologies and genomic tools have revolutionized the understanding of biological research. The generation of a complete genome and other genomic resources in cyprinid species has significantly strengthened molecular-level investigations into disease resistance, growth, reproduction, and adaptation to changing environments. We conducted a comprehensive review of genomic research in important cyprinid species, encompassing genome, transcriptome, proteome, metagenome, epigenome, etc. This review reveals that considerable data has been generated for cyprinid species. However, the seamless integration of this valuable data into genetic selection programs has yet to be achieved. In the upcoming years, genomic techniques, gene transfer, genome editing tools are expected to bring a paradigm shift in sustainable cyprinid aquaculture production. The comprehensive information presented here will offer insights for the cyprinid aquaculture research community.

Keywords

References

  1. Int J Mol Sci. 2018 Jul 20;19(7): [PMID: 30036965]
  2. Microb Ecol. 2017 Jul;74(1):239-249 [PMID: 28108758]
  3. Mol Ecol Resour. 2021 Apr;21(3):912-923 [PMID: 33191666]
  4. Nat Rev Genet. 2020 Jul;21(7):389-409 [PMID: 32300217]
  5. Transgenic Res. 2011 Dec;20(6):1333-55 [PMID: 21437716]
  6. Comp Immunol Microbiol Infect Dis. 2009 Mar;32(2):139-61 [PMID: 18249446]
  7. Mol Immunol. 2014 Sep;61(1):44-53 [PMID: 24865419]
  8. Behav Pharmacol. 2018 Apr;29(2 and 3-Spec Issue):140-151 [PMID: 29543648]
  9. Front Genet. 2023 Jun 08;14:1153911 [PMID: 37359361]
  10. Gene. 2009 Feb 1;430(1-2):5-11 [PMID: 19027055]
  11. Sci Rep. 2016 Mar 15;6:22953 [PMID: 26976234]
  12. Fish Shellfish Immunol. 2018 Dec;83:330-340 [PMID: 30227254]
  13. Antibiotics (Basel). 2022 Oct 20;11(10): [PMID: 36290099]
  14. Front Physiol. 2018 Apr 10;9:381 [PMID: 29692738]
  15. BMC Genomics. 2022 Apr 7;23(1):271 [PMID: 35392810]
  16. Mitochondrial DNA B Resour. 2020 Aug 30;5(3):3215-3217 [PMID: 33458116]
  17. Mar Genomics. 2016 Dec;30:43-54 [PMID: 26833273]
  18. BMC Genomics. 2014 Apr 24;15:307 [PMID: 24762296]
  19. Fish Shellfish Immunol. 2011 Sep;31(3):432-8 [PMID: 21712094]
  20. Sci Rep. 2017 Dec 5;7(1):16971 [PMID: 29209087]
  21. PLoS One. 2012;7(2):e30440 [PMID: 22363439]
  22. Parasitol Res. 2021 Jan;120(1):161-171 [PMID: 33094386]
  23. Virus Evol. 2021 Apr 13;7(1):veab034 [PMID: 34017611]
  24. Front Microbiol. 2017 Mar 17;8:454 [PMID: 28367147]
  25. Gigascience. 2020 Aug 1;9(8): [PMID: 32810278]
  26. Front Genet. 2019 Jun 19;10:597 [PMID: 31275363]
  27. Vet Res. 2018 Apr 20;49(1):37 [PMID: 29678203]
  28. OMICS. 2014 Feb;18(2):98-110 [PMID: 24380445]
  29. Mar Biotechnol (NY). 2019 Oct;21(5):589-595 [PMID: 31346855]
  30. Trends Ecol Evol. 2021 Dec;36(12):1124-1140 [PMID: 34489118]
  31. Int J Mol Sci. 2012;13(8):9798-9807 [PMID: 22949831]
  32. J Fish Biol. 2018 May;92(5):1505-1525 [PMID: 29644700]
  33. BMC Genomics. 2019 Jun 7;20(1):467 [PMID: 31174480]
  34. Heredity (Edinb). 2010 Jul;105(1):4-13 [PMID: 20461105]
  35. Fish Physiol Biochem. 2005 Apr;31(2-3):281-7 [PMID: 20035471]
  36. BMC Genomics. 2014 Jun 30;15:541 [PMID: 24984705]
  37. BMC Genomics. 2017 Feb 20;18(1):191 [PMID: 28219347]
  38. G3 (Bethesda). 2018 Mar 28;8(4):1195-1203 [PMID: 29420190]
  39. Methods Mol Biol. 2022;2467:469-491 [PMID: 35451787]
  40. Epigenetics Chromatin. 2022 May 21;15(1):19 [PMID: 35597966]
  41. Mar Biotechnol (NY). 2012 Oct;14(5):620-33 [PMID: 22298294]
  42. Comp Biochem Physiol Part D Genomics Proteomics. 2020 Sep;35:100688 [PMID: 32454298]
  43. Front Genet. 2021 Nov 12;12:778487 [PMID: 34868267]
  44. BMC Bioinformatics. 2008 Oct 07;9:420 [PMID: 18840282]
  45. Nat Biotechnol. 2002 Feb;20(2):135-41 [PMID: 11821858]
  46. FEMS Microbiol Ecol. 2014 Mar;87(3):704-14 [PMID: 24256454]
  47. Evol Appl. 2020 Dec 22;14(3):735-745 [PMID: 33767748]
  48. Int J Mol Sci. 2020 Oct 31;21(21): [PMID: 33142948]
  49. Dongwuxue Yanjiu. 2014 Sep;35(5):404-10 [PMID: 25297080]
  50. Int J Mol Sci. 2018 Mar 14;19(3): [PMID: 29538345]
  51. Front Genet. 2019 Jan 23;9:693 [PMID: 30728827]
  52. Immun Ageing. 2022 Jun 2;19(1):28 [PMID: 35655223]
  53. Mar Genomics. 2012 Sep;7:3-6 [PMID: 22897955]
  54. Mol Ecol Resour. 2016 Jul;16(4):1002-11 [PMID: 26849107]
  55. Nat Genet. 2021 Oct;53(10):1493-1503 [PMID: 34594040]
  56. Genet Sel Evol. 2019 Apr 29;51(1):17 [PMID: 31035934]
  57. Genet Mol Res. 2015 Apr 17;14(2):3557-69 [PMID: 25966124]
  58. Cytogenet Cell Genet. 2000;88(1-2):133-9 [PMID: 10773687]
  59. BMC Res Notes. 2020 Sep 03;13(1):411 [PMID: 32883365]
  60. Nat Rev Genet. 2022 May;23(5):281-297 [PMID: 34675394]
  61. Front Physiol. 2022 May 20;13:853850 [PMID: 35669576]
  62. Nat Genet. 2015 Jun;47(6):625-31 [PMID: 25938946]
  63. BMC Genomics. 2013 Sep 18;14:630 [PMID: 24047532]
  64. J Genet. 2018 Dec;97(5):1327-1337 [PMID: 30555081]
  65. Genomics. 2010 Jan;95(1):1-6 [PMID: 19716875]
  66. Mar Biotechnol (NY). 2022 Oct;24(5):856-870 [PMID: 35930066]
  67. ISME J. 2011 Oct;5(10):1595-608 [PMID: 21472014]
  68. Sci China Life Sci. 2019 Sep;62(9):1194-1202 [PMID: 30593611]
  69. Gigascience. 2018 Oct 1;7(10): [PMID: 30202850]
  70. Sci Data. 2022 Apr 13;9(1):171 [PMID: 35418183]
  71. Chemosphere. 2023 Jun;325:138389 [PMID: 36921777]
  72. Nature. 2011 Aug 10;477(7363):207-10 [PMID: 21832995]
  73. Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29775-29785 [PMID: 33139555]
  74. Environ Pollut. 2020 Oct;265(Pt A):114927 [PMID: 32544660]
  75. Transgenic Res. 2017 Oct;26(5):577-589 [PMID: 28681201]
  76. Gen Comp Endocrinol. 2013 Oct 1;192:81-8 [PMID: 23583469]
  77. Int J Mol Sci. 2021 Jun 03;22(11): [PMID: 34204879]
  78. Heredity (Edinb). 1975 Jun;34(3):323-40 [PMID: 1056320]
  79. Sci China Life Sci. 2024 Jun;67(6):1308-1310 [PMID: 38240907]
  80. Microb Pathog. 2022 Mar;164:105420 [PMID: 35108565]
  81. Mar Biotechnol (NY). 2023 Dec;25(6):1057-1075 [PMID: 37878212]
  82. Sci Rep. 2020 Nov 11;10(1):19531 [PMID: 33177569]
  83. Front Genet. 2021 Sep 06;12:728177 [PMID: 34552623]
  84. Anim Nutr. 2023 May 16;14:152-162 [PMID: 37455790]
  85. BMC Genomics. 2019 Dec 26;20(1):1019 [PMID: 31878870]
  86. Evol Appl. 2019 Sep 12;13(2):263-277 [PMID: 31993075]
  87. Fish Physiol Biochem. 2019 Oct;45(5):1589-1602 [PMID: 31256306]
  88. Fish Shellfish Immunol. 2018 May;76:206-215 [PMID: 29477498]
  89. Nat Rev Genet. 2012 Jan 04;13(2):97-109 [PMID: 22215131]
  90. Genes (Basel). 2020 Oct 28;11(11): [PMID: 33126496]
  91. Genetica. 2022 Feb;150(1):59-66 [PMID: 34825293]
  92. BMC Genet. 2015 Jul 29;16:94 [PMID: 26219567]
  93. BMC Genomics. 2022 Mar 1;23(1):168 [PMID: 35232381]
  94. ISME J. 2014 Mar;8(3):541-551 [PMID: 24132079]
  95. Animals (Basel). 2023 Mar 18;13(6): [PMID: 36978629]
  96. Ecotoxicology. 2008 Apr;17(3):213-20 [PMID: 18080750]
  97. Gigascience. 2016 May 03;5:18 [PMID: 27144000]
  98. Trends Biotechnol. 2018 Mar;36(3):252-264 [PMID: 29395346]
  99. Genes (Basel). 2023 Mar 27;14(4): [PMID: 37107566]
  100. Fish Shellfish Immunol. 2014 Jan;36(1):187-93 [PMID: 24211853]
  101. Genome Biol Evol. 2010 Jan 06;2:53-66 [PMID: 20333224]
  102. Trends Cell Biol. 2018 Mar;28(3):237-253 [PMID: 29217127]
  103. Nat Rev Genet. 2009 Jan;10(1):57-63 [PMID: 19015660]
  104. Mol Biol Evol. 2021 May 4;38(5):1995-2013 [PMID: 33432361]
  105. G3 (Bethesda). 2017 Aug 7;7(8):2473-2487 [PMID: 28600439]
  106. Theor Appl Genet. 1972 Jan;42(3):130-5 [PMID: 24430834]
  107. Mitochondrial DNA A DNA Mapp Seq Anal. 2016 Nov;27(6):4019-4020 [PMID: 25629503]
  108. Mar Biotechnol (NY). 2023 Dec;25(6):1123-1135 [PMID: 37870741]
  109. BMC Genomics. 2014 Apr 05;15:266 [PMID: 24708260]
  110. Comp Biochem Physiol Part D Genomics Proteomics. 2014 Dec;12:10-5 [PMID: 25305539]
  111. Theriogenology. 2018 Jan 1;105:15-26 [PMID: 28923703]
  112. Front Endocrinol (Lausanne). 2022 Sep 12;13:982488 [PMID: 36171901]
  113. Sci Rep. 2016 Jun 27;6:28679 [PMID: 27345016]
  114. Microb Inform Exp. 2012 Feb 09;2(1):3 [PMID: 22587947]
  115. Int J Mol Sci. 2021 May 31;22(11): [PMID: 34073009]
  116. Mitochondrial DNA. 2015 Feb;26(1):149-50 [PMID: 23901923]
  117. Adv Food Nutr Res. 2017;82:83-116 [PMID: 28427537]
  118. Front Genet. 2020 Apr 21;11:386 [PMID: 32373166]
  119. Front Genet. 2022 Nov 02;13:994471 [PMID: 36406125]
  120. Sov Genet. 1974 Jun 1;8(5):592-600 [PMID: 4413828]
  121. iScience. 2023 Mar 31;26(4):106539 [PMID: 37091248]
  122. Microorganisms. 2022 Oct 12;10(10): [PMID: 36296288]
  123. G3 (Bethesda). 2023 Mar 9;13(3): [PMID: 36639248]
  124. Aging Cell. 2015 Dec;14(6):924-32 [PMID: 25913071]
  125. BMC Genomics. 2016 Sep 02;17:701 [PMID: 27590662]
  126. Mar Genomics. 2016 Feb;25:25-27 [PMID: 26590018]
  127. Sci Rep. 2017 Sep 5;7(1):10456 [PMID: 28874710]
  128. Int J Legal Med. 2022 Nov;136(6):1655-1665 [PMID: 35819508]
  129. Genes (Basel). 2022 Jul 16;13(7): [PMID: 35886050]
  130. Sci Rep. 2017 Jan 17;7:40777 [PMID: 28094307]
  131. Genetica. 2002 Jun;115(2):223-32 [PMID: 12403177]
  132. Fish Shellfish Immunol. 2014 Oct;40(2):624-33 [PMID: 25150450]
  133. PLoS One. 2016 Dec 28;11(12):e0169127 [PMID: 28030623]
  134. Mar Biotechnol (NY). 2021 Jun;23(3):389-401 [PMID: 33864541]
  135. Science. 2018 Sep 28;361(6409):1336-1340 [PMID: 30262495]
  136. Biol Trace Elem Res. 2023 Jan;201(1):403-411 [PMID: 35233713]
  137. PLoS One. 2017 May 22;12(5):e0177675 [PMID: 28531195]
  138. Fish Shellfish Immunol Rep. 2022 Dec 14;4:100077 [PMID: 36589261]
  139. Mol Biol Rep. 2014 Feb;41(2):721-31 [PMID: 24368591]
  140. J Proteomics. 2023 May 15;279:104870 [PMID: 36906258]
  141. J Proteomics. 2016 Sep 16;147:119-124 [PMID: 26947551]
  142. Trends Genet. 2019 Sep;35(9):672-684 [PMID: 31331664]
  143. J Helminthol. 2017 Sep;91(5):517-527 [PMID: 28774354]
  144. Mitochondrial DNA. 2013 Apr;24(2):91-3 [PMID: 22994312]
  145. Front Genet. 2020 Apr 21;11:251 [PMID: 32373152]
  146. Biochem Soc Trans. 2013 Apr;41(2):670-3 [PMID: 23514174]
  147. Animals (Basel). 2023 Apr 04;13(7): [PMID: 37048506]
  148. Front Genet. 2018 Mar 13;9:82 [PMID: 29593780]
  149. Front Genet. 2019 Jun 12;10:543 [PMID: 31249593]
  150. Food Chem. 2013 Jun 1;138(2-3):1476-82 [PMID: 23411270]
  151. BMC Genomics. 2020 Aug 5;21(1):539 [PMID: 32758130]
  152. Yi Chuan Xue Bao. 2006 Feb;33(2):133-40 [PMID: 16529297]
  153. Fish Shellfish Immunol. 2019 Jan;84:627-638 [PMID: 30343007]
  154. Fish Shellfish Immunol. 2016 Dec;59:213-219 [PMID: 27742590]
  155. Int J Mol Sci. 2023 Feb 01;24(3): [PMID: 36769054]
  156. Reprod Domest Anim. 2012 Aug;47 Suppl 4:255-63 [PMID: 22827379]
  157. Nat Rev Microbiol. 2008 Feb;6(2):121-31 [PMID: 18180751]
  158. Glob Chang Biol. 2018 Feb;24(2):580-596 [PMID: 28833818]
  159. Mar Biotechnol (NY). 2019 Apr;21(2):171-185 [PMID: 30588551]
  160. J Biochem. 2019 Mar 1;165(3):209-218 [PMID: 30219851]
  161. Dev Comp Immunol. 2016 Aug;61:242-7 [PMID: 27079451]
  162. Front Genet. 2015 Apr 01;6:128 [PMID: 25883603]
  163. Nat Rev Immunol. 2009 May;9(5):313-23 [PMID: 19343057]
  164. Environ Microbiol Rep. 2013 Dec;5(6):778-86 [PMID: 24249286]
  165. Environ Sci Technol. 2015 Oct 6;49(19):11894-902 [PMID: 26378342]
  166. Metabolites. 2021 Jul 01;11(7): [PMID: 34357329]
  167. Fundam Res. 2023 Aug 01;4(3):589-602 [PMID: 38933191]
  168. Nat Genet. 2014 Nov;46(11):1212-9 [PMID: 25240282]
  169. J Integr Bioinform. 2011 Sep 12;8(2):169 [PMID: 21908900]
  170. Front Physiol. 2019 May 29;10:631 [PMID: 31191340]
  171. Science. 2013 Feb 15;339(6121):819-23 [PMID: 23287718]
  172. Sci Total Environ. 2020 Nov 15;743:140796 [PMID: 32673925]
  173. Sci China Life Sci. 2022 Jan;65(1):206-214 [PMID: 33948869]
  174. Comp Biochem Physiol Part D Genomics Proteomics. 2023 Jun;46:101072 [PMID: 36990038]
  175. J Mol Endocrinol. 2018 Jul 13;: [PMID: 30006342]
  176. Front Genet. 2021 Jan 15;11:603454 [PMID: 33519908]
  177. Heredity (Edinb). 1975 Jun;34(3):341-50 [PMID: 1056321]
  178. PeerJ. 2022 Nov 21;10:e14403 [PMID: 36438576]
  179. Mar Biotechnol (NY). 2020 Oct;22(5):706-716 [PMID: 32914204]
  180. PeerJ. 2017 Dec 7;5:e4147 [PMID: 29230373]
  181. Nature. 2021 Mar;591(7851):551-563 [PMID: 33762770]
  182. Gene. 2008 Nov 15;424(1-2):96-101 [PMID: 18706492]
  183. Mar Biotechnol (NY). 2014 Oct;16(5):580-93 [PMID: 24832481]
  184. Mitochondrial DNA A DNA Mapp Seq Anal. 2016;27(1):50-1 [PMID: 24438270]

Word Cloud

Created with Highcharts 10.0.0cyprinidspeciesgenomicaquacultureproductiondiseaseimportantresearchgenometermssignificantlybiologicalenhancebreedinggrowthresistancegenetictoolsresourcescomprehensivereviewdataselectionsustainableCyprinidculturedaquaticaroundworldquantitytotalvalueaccount25%globalcontributefulfillingdemandfishfoodfacingsevereconcernsseedqualityrisingfeedcostsoutbreaksintrogressionexoticenvironmentalimpactsanthropogenicactivitiesNumerousresearchersexploredissuespotentialmethodsSelectiveextensivelyemployedspecifictraitslikecontextdiscussedeffortsmadeimprovepracticesapproachesrecentadvancesDNAsequencingtechnologiesrevolutionizedunderstandinggenerationcompletestrengthenedmolecular-levelinvestigationsreproductionadaptationchangingenvironmentsconductedencompassingtranscriptomeproteomemetagenomeepigenomeetcrevealsconsiderablegeneratedHoweverseamlessintegrationvaluableprogramsyetachievedupcomingyearstechniquesgenetransfereditingexpectedbringparadigmshiftinformationpresentedwillofferinsightscommunityGeneticimprovementspecies:statusfutureperspectivescyprinidsgeneticsgenomicsselective

Similar Articles

Cited By

No available data.