kills in a polyphosphate-dependent manner.

Ritika Shah, Julius Kwesi Narh, Magdalena Urlaub, Olivia Jankiewicz, Colton Johnson, Barry Livingston, Jan-Ulrik Dahl
Author Information
  1. Ritika Shah: School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA.
  2. Julius Kwesi Narh: School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA.
  3. Magdalena Urlaub: School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA.
  4. Olivia Jankiewicz: School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA.
  5. Colton Johnson: School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA.
  6. Barry Livingston: School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA.
  7. Jan-Ulrik Dahl: School of Biological Sciences, Illinois State University, Microbiology, Normal, Illinois, USA. ORCID

Abstract

Due to their frequent coexistence in many polymicrobial infections, including in patients with cystic fibrosis or burn/chronic wounds, many studies have investigated the mechanistic details of the interaction between the opportunistic pathogens and rapidly outcompetes under cocultivation conditions which is mediated by several of 's virulence factors. Here, we report that polyphosphate (polyP), an efficient stress defense system and virulence factor in , plays a role in the pathogen's ability to inhibit and kill in a contact-independent manner. We show that cells characterized by low polyP levels are less detrimental to growth and survival while the Gram-positive pathogen is significantly more compromised by the presence of cells that produce high levels of polyP. The polyP-dependent phenotype of -mediated killing of could at least in part be direct, as polyP was detected in the spent media and causes significant damage to the cell envelope. However, more likely is that polyP's effects are indirect through modulating the production of one of virulence factors, pyocyanin. We show that pyocyanin production in occurs polyP-dependently and harms through membrane damage and potentially the generation of reactive oxygen species, resulting in the increased expression of antioxidant enzymes. In summary, our study adds a new component to the list of biomolecules that the Gram-negative pathogen generates to compete with for resources.IMPORTANCEHow do interactions between microorganisms shape the course of polymicrobial infections? Previous studies have provided evidence that the two opportunistic pathogens and generate molecules that modulate their interaction with potentially significant impact on disease outcomes. Our study identified the biopolymer polyphosphate (polyP) as a new effector molecule that impacts 's interaction with . We show that kills in a polyP-dependent manner, which occurs primarily through the polyP-dependent production of the virulence factor pyocyanin. Our findings add a new role for polyP to an already extensive list of functions. A more in-depth understanding of how polyP influences interspecies interactions is critical, as targeting polyP synthesis in bacteria such as may have a significant impact on other microorganisms and potentially result in dynamic changes in the microbial composition.

Keywords

References

  1. mBio. 2017 Jul 18;8(4): [PMID: 28720732]
  2. Annu Rev Biochem. 2009;78:605-47 [PMID: 19344251]
  3. Antimicrob Agents Chemother. 2011 Feb;55(2):806-12 [PMID: 21098243]
  4. Microbiology (Reading). 2014 Feb;160(Pt 2):406-417 [PMID: 24275100]
  5. Infect Immun. 2014 Nov;82(11):4718-28 [PMID: 25156721]
  6. mBio. 2013 Feb 12;4(1):e00023-13 [PMID: 23404396]
  7. Nat Rev Microbiol. 2016 Feb;14(2):93-105 [PMID: 26714431]
  8. Metallomics. 2020 Dec 23;12(12):2108-2120 [PMID: 33355556]
  9. Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2440-E2449 [PMID: 28265086]
  10. J Bacteriol. 2000 Jan;182(1):225-7 [PMID: 10613886]
  11. mBio. 2020 Sep 29;11(5): [PMID: 32994322]
  12. Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31923-31934 [PMID: 33268492]
  13. Curr Genet. 2021 Jun;67(3):331-346 [PMID: 33420907]
  14. J Bacteriol. 1980 Jun;142(3):836-42 [PMID: 6769912]
  15. Clin Microbiol Rev. 2006 Apr;19(2):403-34 [PMID: 16614255]
  16. Appl Microbiol Biotechnol. 2016 Jul;100(14):6141-6148 [PMID: 27236810]
  17. Microbiol Spectr. 2022 Apr 27;10(2):e0221121 [PMID: 35262393]
  18. J Clin Invest. 1990 Oct;86(4):1030-7 [PMID: 2170442]
  19. J Bacteriol. 2000 Dec;182(23):6687-93 [PMID: 11073913]
  20. J Antimicrob Chemother. 1992 Nov;30(5):615-23 [PMID: 1493979]
  21. Infect Immun. 1988 Sep;56(9):2515-7 [PMID: 3137173]
  22. Iran J Basic Med Sci. 2018 Aug;21(8):794-799 [PMID: 30186565]
  23. Nat Rev Microbiol. 2015 May;13(5):269-84 [PMID: 25853778]
  24. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9636-41 [PMID: 10931957]
  25. J Biol Chem. 1990 Jul 15;265(20):11734-9 [PMID: 2164013]
  26. Front Microbiol. 2021 Oct 26;12:764733 [PMID: 34764949]
  27. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11210-5 [PMID: 9326588]
  28. Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2833-8 [PMID: 16477005]
  29. Curr Biol. 2016 Jan 25;26(2):195-206 [PMID: 26776731]
  30. PLoS Biol. 2017 Nov 27;15(11):e2003981 [PMID: 29176757]
  31. Microb Ecol. 2002 Jul;44(1):69-77 [PMID: 12187377]
  32. Nat Microbiol. 2017 Jan 23;2:16267 [PMID: 28112760]
  33. Infect Immun. 2020 Jun 22;88(7): [PMID: 32152198]
  34. Commun Biol. 2022 Aug 25;5(1):871 [PMID: 36008485]
  35. Free Radic Biol Med. 2002 Dec 1;33(11):1527-33 [PMID: 12446210]
  36. Infect Immun. 1996 Feb;64(2):518-23 [PMID: 8550201]
  37. J Bacteriol. 2017 Aug 8;199(17): [PMID: 28607159]
  38. Trends Microbiol. 2021 Nov;29(11):1013-1023 [PMID: 33632603]
  39. Animal Model Exp Med. 2021 Sep 16;4(3):220-232 [PMID: 34557648]
  40. J Food Prot. 1994 Apr;57(4):289-294 [PMID: 31113131]
  41. J Mol Biol. 2015 Apr 10;427(7):1549-63 [PMID: 25698115]
  42. J Bacteriol. 1998 Apr;180(7):1841-7 [PMID: 9537383]
  43. Expert Rev Anti Infect Ther. 2015 May;13(5):605-13 [PMID: 25746414]
  44. Front Cell Infect Microbiol. 2022 Jan 06;11:824042 [PMID: 35071057]
  45. mBio. 2022 Oct 26;13(5):e0192622 [PMID: 36073817]
  46. J Bacteriol. 2013 Jun;195(12):2839-51 [PMID: 23585537]
  47. J Bacteriol. 1990 Feb;172(2):884-900 [PMID: 2153661]
  48. J Bacteriol. 2005 May;187(9):3088-99 [PMID: 15838036]
  49. Cold Spring Harb Perspect Med. 2012 Nov 01;2(11): [PMID: 23125205]
  50. J Biol Chem. 1995 Mar 17;270(11):5818-22 [PMID: 7890711]
  51. J Enzyme Inhib Med Chem. 2020 Dec;35(1):1224-1232 [PMID: 32420773]
  52. Proc Natl Acad Sci U S A. 2006 Dec 26;103(52):19890-5 [PMID: 17172450]
  53. J Biol Chem. 1994 Mar 4;269(9):6290-5 [PMID: 8119977]
  54. Biochemistry. 2007 Feb 20;46(7):1821-8 [PMID: 17253782]
  55. J Mol Biol. 2024 Aug 15;436(16):168651 [PMID: 38866092]
  56. Front Cell Infect Microbiol. 2020 Jun 03;10:266 [PMID: 32582568]
  57. Enzyme Res. 2015;2015:404607 [PMID: 26576296]
  58. Curr Opin Microbiol. 2018 Apr;42:19-24 [PMID: 28988156]
  59. J Gastroenterol Hepatol. 2007 Aug;22(8):1350-1 [PMID: 17688676]
  60. Lancet. 2005 Jan 15-21;365(9455):253-5 [PMID: 15652608]
  61. Curr Opin Microbiol. 2015 Apr;24:1-6 [PMID: 25589044]
  62. Int J Med Microbiol. 2010 Dec;300(8):534-43 [PMID: 20947426]
  63. Cell Rep. 2020 Oct 27;33(4):108318 [PMID: 33113373]
  64. Front Microbiol. 2020 May 26;11:865 [PMID: 32670206]
  65. PLoS One. 2018 Oct 16;13(10):e0205815 [PMID: 30325949]
  66. Trends Mol Med. 2004 Dec;10(12):599-606 [PMID: 15567330]
  67. J Bacteriol. 2023 Oct 26;205(10):e0006423 [PMID: 37791752]
  68. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  69. J Appl Microbiol. 2015 Apr;118(4):817-25 [PMID: 25640983]
  70. Front Cell Infect Microbiol. 2017 Feb 15;7:39 [PMID: 28261568]
  71. J Fluoresc. 2008 Sep;18(5):859-66 [PMID: 18210191]
  72. ACS Appl Bio Mater. 2020 Aug 17;3(8):5350-5356 [PMID: 35021709]
  73. Sci Rep. 2015 Nov 23;5:16569 [PMID: 26593271]
  74. Appl Microbiol Biotechnol. 2014 Aug;98(16):7199-209 [PMID: 24974281]
  75. J Mol Biol. 2018 Oct 19;430(21):4195-4208 [PMID: 30130556]
  76. Mol Microbiol. 2017 Nov;106(3):335-350 [PMID: 28795780]
  77. J Microbiol. 2018 Jul;56(7):449-457 [PMID: 29948830]
  78. mBio. 2021 Jun 29;12(3):e0059221 [PMID: 34126765]
  79. Annu Rev Biochem. 1999;68:89-125 [PMID: 10872445]
  80. Antioxid Redox Signal. 2015 May 1;22(13):1097-110 [PMID: 25686490]
  81. J Microbiol Methods. 1999 Jul;37(1):77-86 [PMID: 10395466]
  82. Biol Res. 2015 Apr 25;48:22 [PMID: 25907584]
  83. Biotechnol Rep (Amst). 2015 Aug 20;8:45-55 [PMID: 28352572]
  84. Lett Appl Microbiol. 1997 Mar;24(3):203-6 [PMID: 9080700]
  85. J Bacteriol. 2005 Jan;187(2):554-66 [PMID: 15629927]
  86. Methods Cell Biol. 1989;30:417-48 [PMID: 2467179]
  87. J Bacteriol. 2015 Jul;197(14):2252-64 [PMID: 25917910]
  88. J Biol Chem. 1993 Jan 5;268(1):633-9 [PMID: 8380170]
  89. Pharmaceuticals (Basel). 2015 Nov 25;8(4):816-35 [PMID: 26610524]
  90. mBio. 2016 Aug 16;7(4): [PMID: 27531908]
  91. Appl Environ Microbiol. 2001 Apr;67(4):1636-45 [PMID: 11282616]
  92. Trends Biochem Sci. 2008 Jun;33(6):284-90 [PMID: 18487048]
  93. J Biol Chem. 2019 Feb 8;294(6):2180-2190 [PMID: 30425096]
  94. Arch Microbiol. 2020 Aug;202(6):1507-1515 [PMID: 32222778]
  95. Front Microbiol. 2019 Jan 09;9:3291 [PMID: 30687276]
  96. Elife. 2019 Nov 12;8: [PMID: 31713513]
  97. Mol Cell. 2014 Mar 6;53(5):689-99 [PMID: 24560923]
  98. Clin Infect Dis. 2006 Jan 1;42(1):46-50 [PMID: 16323090]

Grants

  1. R03 AI174033/NIAID NIH HHS
  2. R15 AI164585/NIAID NIH HHS
  3. 1R03AI174033-01A1/HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  4. 1R15AI164585/HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)

MeSH Term

Pseudomonas aeruginosa
Polyphosphates
Staphylococcus aureus
Virulence Factors
Pyocyanine
Microbial Viability
Humans

Chemicals

Polyphosphates
Virulence Factors
Pyocyanine

Word Cloud

Created with Highcharts 10.0.0polyPvirulencepolymicrobialinteractionfactorspolyphosphatemannershowpolyP-dependentsignificantproductionpyocyaninpotentiallynewinteractionsmanystudiesopportunisticpathogens'sstressfactorrolecellslevelspathogendamageoccursstudylistmicroorganismsimpactkillsDuefrequentcoexistenceinfectionsincludingpatientscysticfibrosisburn/chronicwoundsinvestigatedmechanisticdetailsrapidlyoutcompetescocultivationconditionsmediatedseveralreportefficientdefensesystemplayspathogen'sabilityinhibitkillcontact-independentcharacterizedlowlessdetrimentalgrowthsurvivalGram-positivesignificantlycompromisedpresenceproducehighphenotype-mediatedkillingleastpartdirectdetectedspentmediacausescellenvelopeHoweverlikelypolyP'seffectsindirectmodulatingonepolyP-dependentlyharmsmembranegenerationreactiveoxygenspeciesresultingincreasedexpressionantioxidantenzymessummaryaddscomponentbiomoleculesGram-negativegeneratescompeteresourcesIMPORTANCEHowshapecourseinfections?Previousprovidedevidencetwogeneratemoleculesmodulatediseaseoutcomesidentifiedbiopolymereffectormoleculeimpactsprimarilyfindingsaddalreadyextensivefunctionsin-depthunderstandinginfluencesinterspeciescriticaltargetingsynthesisbacteriamayresultdynamicchangesmicrobialcompositionpolyphosphate-dependentPseudomonasaeruginosaStaphylococcusaureusoxidativephenazine

Similar Articles

Cited By (4)