Comparative genomics unravels a rich set of biosynthetic gene clusters with distinct evolutionary trajectories across fungal species (Termitomyces) farmed by termites.

Suzanne Schmidt, Robert Murphy, Joel Vizueta, Signe Kjærsgaard Schierbech, Benjamin H Conlon, Nina B Kreuzenbeck, Sabine M E Vreeburg, Lennart J J van de Peppel, Duur K Aanen, Kolotchèlèma S Silué, N'Golo A Kone, Christine Beemelmanns, Tilmann Weber, Michael Poulsen
Author Information
  1. Suzanne Schmidt: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark. Suzanne.schmidt@bio.ku.dk. ORCID
  2. Robert Murphy: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
  3. Joel Vizueta: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark. ORCID
  4. Signe Kjærsgaard Schierbech: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
  5. Benjamin H Conlon: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
  6. Nina B Kreuzenbeck: Group of Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany.
  7. Sabine M E Vreeburg: Laboratory of Genetics, Wageningen University, 6700 AA, Wageningen, The Netherlands.
  8. Lennart J J van de Peppel: Laboratory of Genetics, Wageningen University, 6700 AA, Wageningen, The Netherlands. ORCID
  9. Duur K Aanen: Laboratory of Genetics, Wageningen University, 6700 AA, Wageningen, The Netherlands.
  10. Kolotchèlèma S Silué: Unité de Formation et de Recherche Sciences de la Nature (UFR-SN), Laboratoire d'Ecologie et de Développement Durable (UREB), Université Nangui Abrogoua, Abidjan, Côte d'Ivoire.
  11. N'Golo A Kone: Unité de Formation et de Recherche Sciences de la Nature (UFR-SN), Laboratoire d'Ecologie et de Développement Durable (UREB), Université Nangui Abrogoua, Abidjan, Côte d'Ivoire.
  12. Christine Beemelmanns: Group of Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany. ORCID
  13. Tilmann Weber: The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark. ORCID
  14. Michael Poulsen: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark. ORCID

Abstract

The use of compounds produced by hosts or symbionts for defence against antagonists has been identified in many organisms, including in fungus-farming termites (Macrotermitinae). The obligate mutualistic fungus Termitomyces plays a pivotal role in plant biomass decomposition and as the primary food source for these termites. Despite the isolation of various specialized metabolites from different Termitomyces species, our grasp of their natural product repertoire remains incomplete. To address this knowledge gap, we conducted a comprehensive analysis of 39 Termitomyces genomes, representing 21 species associated with members of five termite host genera. We identified 754 biosynthetic gene clusters (BGCs) coding for specialized metabolites and categorized 660 BGCs into 61 biosynthetic gene cluster families (GCFs) spanning five compound classes. Seven GCFs were shared by all 21 Termitomyces species and 21 GCFs were present in all genomes of subsets of species. Evolutionary constraint analyses on the 25 most abundant GCFs revealed distinctive evolutionary histories, signifying that millions of years of termite-fungus symbiosis have influenced diverse biosynthetic pathways. This study unveils a wealth of non-random and largely undiscovered chemical potential within Termitomyces and contributes to our understanding of the intricate evolutionary trajectories of biosynthetic gene clusters in the context of long-standing symbiosis.

References

  1. Curr Biol. 2021 Oct 11;31(19):4413-4421.e5 [PMID: 34403645]
  2. Sci Rep. 2021 Jan 8;11(1):153 [PMID: 33420232]
  3. Appl Microbiol Biotechnol. 2019 Apr;103(8):3277-3287 [PMID: 30859257]
  4. Curr Protoc. 2021 Dec;1(12):e323 [PMID: 34936221]
  5. Nucleic Acids Res. 2019 Jan 8;47(D1):D807-D811 [PMID: 30395283]
  6. mSystems. 2021 Dec 21;6(6):e0102021 [PMID: 34812649]
  7. Appl Microbiol Biotechnol. 2015 Feb;99(4):1719-30 [PMID: 25125042]
  8. Bioinformatics. 2016 Apr 1;32(7):1009-15 [PMID: 26589280]
  9. Mol Biol Evol. 2021 Aug 23;38(9):4025-4038 [PMID: 33983409]
  10. Methods Mol Biol. 2014;1079:155-70 [PMID: 24170401]
  11. Bioinformatics. 2008 Mar 1;24(5):637-44 [PMID: 18218656]
  12. Molecules. 2018 Mar 01;23(3): [PMID: 29494478]
  13. Bioinformatics. 2018 Jul 15;34(14):2490-2492 [PMID: 29506019]
  14. Chem Senses. 2002 Jul;27(6):505-9 [PMID: 12142326]
  15. Nat Chem Biol. 2020 Jan;16(1):60-68 [PMID: 31768033]
  16. Nucleic Acids Res. 2023 Jan 6;51(D1):D603-D610 [PMID: 36399496]
  17. BMC Bioinformatics. 2005 Feb 15;6:31 [PMID: 15713233]
  18. mSystems. 2022 Feb 22;7(1):e0121421 [PMID: 35014870]
  19. Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14887-92 [PMID: 12386341]
  20. Appl Microbiol Biotechnol. 2018 Jun;102(12):4987-4994 [PMID: 29704040]
  21. Brief Bioinform. 2019 Jul 19;20(4):1103-1113 [PMID: 29112695]
  22. Curr Protoc Bioinformatics. 2020 Jun;70(1):e102 [PMID: 32559359]
  23. Fungal Biol Biotechnol. 2020 Jul 01;7:11 [PMID: 32626593]
  24. Plant Signal Behav. 2015;10(8):e1048052 [PMID: 26179718]
  25. Nucleic Acids Res. 2005 Nov 28;33(20):6494-506 [PMID: 16314312]
  26. Microb Cell Fact. 2022 Apr 19;21(1):64 [PMID: 35440053]
  27. Mol Ecol. 1993 Apr;2(2):113-8 [PMID: 8180733]
  28. Proc Natl Acad Sci U S A. 2021 May 11;118(19): [PMID: 33941694]
  29. BMC Evol Biol. 2013 Nov 17;13:253 [PMID: 24238092]
  30. STAR Protoc. 2022 Jan 24;3(1):101126 [PMID: 35112085]
  31. Genome Biol. 2022 Dec 15;23(1):258 [PMID: 36522651]
  32. Sci Rep. 2017 Apr 13;7(1):862 [PMID: 28408760]
  33. Mol Biol Evol. 2015 May;32(5):1342-53 [PMID: 25697341]
  34. Mol Biol Evol. 2015 Mar;32(3):820-32 [PMID: 25540451]
  35. BMC Evol Biol. 2019 Jan 11;19(1):21 [PMID: 30634908]
  36. Appl Biochem Biotechnol. 2020 Dec;192(4):1270-1283 [PMID: 32720080]
  37. ISME J. 2022 Jan;16(1):101-111 [PMID: 34253854]
  38. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  39. Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6241-6 [PMID: 22454494]
  40. Mol Biol Evol. 2020 May 1;37(5):1530-1534 [PMID: 32011700]
  41. PLoS One. 2012;7(1):e30288 [PMID: 22272325]
  42. Genome Res. 2008 Dec;18(12):1979-90 [PMID: 18757608]
  43. Microb Cell Fact. 2017 Jun 12;16(1):103 [PMID: 28606152]
  44. Mol Biol Evol. 2018 Feb 1;35(2):518-522 [PMID: 29077904]
  45. Bioinformatics. 2013 Nov 15;29(22):2869-76 [PMID: 23990417]
  46. Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):E2020-E2029 [PMID: 29444867]
  47. Nucleic Acids Res. 2021 Jan 8;49(D1):D412-D419 [PMID: 33125078]
  48. Nucleic Acids Res. 2023 Jul 5;51(W1):W46-W50 [PMID: 37140036]
  49. Nat Prod Res. 2009;23(16):1478-84 [PMID: 19844822]
  50. Nat Prod Rep. 2022 Feb 23;39(2):231-248 [PMID: 34879123]
  51. Nucleic Acids Res. 2014 Sep;42(15):e119 [PMID: 24990371]
  52. Appl Environ Microbiol. 2012 Feb;78(3):822-7 [PMID: 22113914]
  53. Commun Chem. 2023 Apr 24;6(1):79 [PMID: 37095327]
  54. Appl Environ Microbiol. 2017 Oct 17;83(21): [PMID: 28842536]
  55. BMC Genomics. 2023 Mar 16;24(1):123 [PMID: 36927388]
  56. Sci Rep. 2019 Jun 19;9(1):8819 [PMID: 31217550]
  57. Nat Methods. 2017 Jun;14(6):587-589 [PMID: 28481363]
  58. Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14500-5 [PMID: 25246537]
  59. Microbiol Spectr. 2022 Dec 21;10(6):e0202122 [PMID: 36314921]
  60. Bioinformatics. 2016 Mar 1;32(5):767-9 [PMID: 26559507]
  61. Bioinformatics. 2005 Mar 1;21(5):676-9 [PMID: 15509596]
  62. BMC Bioinformatics. 2018 May 8;19(Suppl 6):153 [PMID: 29745866]
  63. Org Biomol Chem. 2019 Mar 27;17(13):3348-3355 [PMID: 30693926]

MeSH Term

Isoptera
Animals
Termitomyces
Multigene Family
Symbiosis
Genomics
Evolution, Molecular
Phylogeny
Genome, Fungal
Biosynthetic Pathways

Word Cloud

Created with Highcharts 10.0.0TermitomycesspeciesbiosyntheticgeneGCFstermites21clustersevolutionaryidentifiedspecializedmetabolitesgenomesfiveBGCssymbiosistrajectoriesusecompoundsproducedhostssymbiontsdefenceantagonistsmanyorganismsincludingfungus-farmingMacrotermitinaeobligatemutualisticfungusplayspivotalroleplantbiomassdecompositionprimaryfoodsourceDespiteisolationvariousdifferentgraspnaturalproductrepertoireremainsincompleteaddressknowledgegapconductedcomprehensiveanalysis39representingassociatedmemberstermitehostgenera754codingcategorized66061clusterfamiliesspanningcompoundclassesSevensharedpresentsubsetsEvolutionaryconstraintanalyses25abundantrevealeddistinctivehistoriessignifyingmillionsyearstermite-fungusinfluenceddiversepathwaysstudyunveilswealthnon-randomlargelyundiscoveredchemicalpotentialwithinTermitomyces andcontributesunderstandingintricatecontextlong-standingComparativegenomicsunravelsrichsetdistinctacrossfungalfarmed

Similar Articles

Cited By