Inhalation of 2,2',5,5'-tetrachlorobiphenyl (PCB52) causes changes to the gut microbiome throughout the gastrointestinal tract.

Laura E Dean, Hui Wang, Amanda J Bullert, Hui Wang, Andrea Adamcakova-Dodd, Ashutosh K Mangalam, Peter S Thorne, James A Ankrum, Aloysius J Klingelhutz, Hans-Joachim Lehmler
Author Information
  1. Laura E Dean: Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States. Electronic address: laura-gosse@uiowa.edu.
  2. Hui Wang: Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States. Electronic address: hui-wang-2@uiowa.edu.
  3. Amanda J Bullert: Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States. Electronic address: amanda-bullert@uiowa.edu.
  4. Hui Wang: Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States. Electronic address: hui-wang-1@uiowa.edu.
  5. Andrea Adamcakova-Dodd: Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States. Electronic address: andrea-a-dodd@uiowa.edu.
  6. Ashutosh K Mangalam: Department of Pathology, University of Iowa, Iowa City, IA, United States. Electronic address: ashutosh-mangalam@uiowa.edu.
  7. Peter S Thorne: Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States. Electronic address: peter-thorne@uiowa.edu.
  8. James A Ankrum: Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States. Electronic address: james-ankrum@uiowa.edu.
  9. Aloysius J Klingelhutz: Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States. Electronic address: al-klingelhutz@uiowa.edu.
  10. Hans-Joachim Lehmler: Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States. Electronic address: hans-joachim-lehmler@uiowa.edu.

Abstract

Polychlorinated biphenyls (PCBs), such as PCB52, are hazardous environmental contaminants present in indoor and outdoor environments. Oral PCB exposure affects the colon microbiome; however, it is unknown if inhalation of PCBs alters the intestinal microbiome. We hypothesize that sub-acute inhalation of PCB52 affects microbial communities depending on the location in the (GI) gastrointestinal tract and the local profiles of PCB52 and its metabolites present in the GI tract following mucociliary clearance and biliary or intestinal excretion. Sprague-Dawley rats were exposed via nose-only inhalation 4 h per day, 7 days per week, for 4 weeks to either filtered air or PCB52. After 28 days, differences in the microbiome and levels of PCB52 and its metabolites were characterized throughout the GI tract. PCB52 inhalation altered taxa abundances and predicted functions altered throughout the gut, with most alterations occurring in the large intestine. PCB52 and metabolite levels varied across the GI tract, resulting in differing PCB × microbiome networks. Thus, the presence of different levels of PCB52 and its metabolites in different parts of the GI tract has varying effects on the composition and predicted function of microbial communities. Future studies need to investigate whether these changes lead to adverse outcomes.

Keywords

References

  1. Environ Sci Technol. 2022 Sep 6;56(17):12460-12472 [PMID: 35994059]
  2. Front Microbiol. 2023 Jan 05;13:1109651 [PMID: 36687627]
  3. J Nutr. 2016 Mar;146(3):474-83 [PMID: 26843585]
  4. Environ Sci Technol. 2022 Feb 15;56(4):2269-2278 [PMID: 35107261]
  5. Environ Sci Pollut Res Int. 2011 Feb;18(2):135-51 [PMID: 20848233]
  6. Mar Drugs. 2022 Apr 09;20(4): [PMID: 35447933]
  7. Therap Adv Gastroenterol. 2021 Apr 15;14:17562848211004469 [PMID: 33948112]
  8. Chem Res Toxicol. 2013 Jun 17;26(6):853-5 [PMID: 23713983]
  9. Environ Pollut. 2021 Jan 1;268(Pt A):115726 [PMID: 33032095]
  10. Lancet Microbe. 2022 Dec;3(12):e969-e983 [PMID: 36182668]
  11. Innovation (Camb). 2021 Jul 01;2(3):100141 [PMID: 34557778]
  12. Bioinformatics. 2018 Feb 15;34(4):701-702 [PMID: 29069296]
  13. Front Microbiol. 2022 Jul 22;13:916089 [PMID: 35935193]
  14. Sci Rep. 2021 May 27;11(1):11094 [PMID: 34045537]
  15. Environ Sci Technol. 2015 Jan 6;49(1):616-25 [PMID: 25420130]
  16. Toxicol Rep. 2017 Dec 19;5:96-107 [PMID: 29854581]
  17. Appl Environ Microbiol. 2002 Dec;68(12):5789-95 [PMID: 12450797]
  18. Environ Pollut. 2022 Nov 15;313:120186 [PMID: 36115491]
  19. Sci Total Environ. 2019 Feb 25;653:274-282 [PMID: 30412872]
  20. Chemosphere. 2015 Jan;118:5-11 [PMID: 25433397]
  21. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  22. Sci Total Environ. 2016 Jan 15;541:1463-1476 [PMID: 26490526]
  23. Environ Sci Technol. 2020 Sep 15;54(18):11443-11452 [PMID: 32816464]
  24. Environ Pollut. 2018 Nov;242(Pt A):1022-1032 [PMID: 30373033]
  25. Chem Res Toxicol. 2023 Jun 19;36(6):971-981 [PMID: 37279407]
  26. Environ Health Perspect. 2013 Jun;121(6):725-30 [PMID: 23632211]
  27. Environ Sci Technol. 2012 Sep 4;46(17):9653-62 [PMID: 22846166]
  28. Nanoscale. 2019 Nov 28;11(46):22398-22412 [PMID: 31738363]
  29. Environ Sci Technol. 2022 Feb 1;56(3):1780-1790 [PMID: 34994547]
  30. Food Chem Toxicol. 2023 Feb;172:113579 [PMID: 36563926]
  31. Front Pharmacol. 2022 Jan 20;12:773722 [PMID: 35126115]
  32. Int J Syst Evol Microbiol. 2020 Apr;70(4):2782-2858 [PMID: 32293557]
  33. Chem Res Toxicol. 2000 Aug;13(8):710-8 [PMID: 10956058]
  34. IARC Monogr Eval Carcinog Risks Hum. 2016;107:9-500 [PMID: 29905442]
  35. Arch Toxicol. 2019 Apr;93(4):997-1008 [PMID: 30600366]
  36. Environ Sci Technol. 2015 Jan 20;49(2):1156-64 [PMID: 25510359]
  37. Chemosphere. 2022 Mar;291(Pt 1):132722 [PMID: 34718009]
  38. Int J Mol Sci. 2022 Jul 26;23(15): [PMID: 35897801]
  39. ISME J. 2012 Jul;6(7):1415-26 [PMID: 22258098]
  40. Sci Rep. 2022 May 20;12(1):8534 [PMID: 35595870]
  41. Toxicol In Vitro. 2023 Jun;89:105568 [PMID: 36804509]
  42. Foods. 2023 Aug 31;12(17): [PMID: 37685206]
  43. Ecotoxicol Environ Saf. 2022 Aug;241:113726 [PMID: 35691195]
  44. Appl Microbiol Biotechnol. 2022 Feb;106(3):1325-1339 [PMID: 35037997]
  45. Front Microbiol. 2023 Mar 08;14:1111962 [PMID: 36970673]
  46. J Vis Exp. 2019 Oct 15;(152): [PMID: 31680682]
  47. Microbiologyopen. 2018 Oct;7(5):e00677 [PMID: 29911322]
  48. Genome Biol. 2019 Sep 2;20(1):185 [PMID: 31477170]
  49. Toxicol Sci. 2018 Dec 01;166(2):269-287 [PMID: 30496569]
  50. Environ Health Perspect. 2015 Feb;123(2):109-13 [PMID: 25302536]
  51. Int J Mol Sci. 2023 Feb 13;24(4): [PMID: 36835135]
  52. Genome Biol. 2004;5(4):217 [PMID: 15059250]
  53. Biomed Pharmacother. 2020 Dec;132:110826 [PMID: 33068929]
  54. J Chromatogr A. 2008 Dec 19;1214(1-2):37-46 [PMID: 19019378]
  55. Environ Sci Technol. 2015 Oct 6;49(19):11875-83 [PMID: 26348937]
  56. Comp Biochem Physiol C Comp Pharmacol Toxicol. 1993 May;105(1):95-106 [PMID: 8101795]
  57. Toxicology. 2014 Mar 20;317:31-9 [PMID: 24451063]
  58. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  59. Environ Sci Technol. 2024 Apr 9;58(14):6105-6116 [PMID: 38547313]
  60. Environ Int. 2014 Feb;63:92-100 [PMID: 24275706]
  61. Crit Rev Toxicol. 2015 Mar;45(3):245-72 [PMID: 25629923]
  62. Nutrients. 2020 May 19;12(5): [PMID: 32438689]
  63. Metabolites. 2022 Sep 23;12(10): [PMID: 36295797]
  64. Microbes Environ. 2018 Mar 29;33(1):50-57 [PMID: 29415909]
  65. BMC Microbiol. 2019 Aug 6;19(1):181 [PMID: 31387544]
  66. Toxicol Appl Pharmacol. 1983 Sep 15;70(2):262-72 [PMID: 6414105]
  67. ACS Chem Neurosci. 2024 Aug 7;15(15):2729-2740 [PMID: 38953493]
  68. Environ Sci Technol. 2019 Apr 2;53(7):3948-3958 [PMID: 30821444]
  69. Environ Sci Technol. 2022 Dec 6;56(23):16544-16545 [PMID: 36399046]
  70. Bioinformatics. 2013 Jul 15;29(14):1830-1 [PMID: 23740750]
  71. Front Nutr. 2021 Dec 07;8:746515 [PMID: 34950687]
  72. Stat Appl Genet Mol Biol. 2008;7(1):Article 35 [PMID: 19049491]
  73. Environ Health Perspect. 2013 Mar;121(3):A86-93 [PMID: 23454657]
  74. Drug Metab Dispos. 2016 Dec;44(12):1899-1909 [PMID: 27625140]
  75. Environ Pollut. 2019 Oct;253:708-721 [PMID: 31336350]
  76. PeerJ. 2020 Aug 11;8:e9720 [PMID: 32864221]
  77. Environ Toxicol Pharmacol. 2018 Sep;62:69-78 [PMID: 29986280]
  78. Chem Res Toxicol. 2014 Aug 18;27(8):1411-20 [PMID: 24988477]
  79. J Nutr Biochem. 2005 Jun;16(6):383-4 [PMID: 15936651]
  80. Environ Health Perspect. 2017 Mar;125(3):437-446 [PMID: 27634282]
  81. Microbiol Spectr. 2022 Apr 27;10(2):e0204721 [PMID: 35285706]
  82. Sci Rep. 2021 Oct 7;11(1):19929 [PMID: 34620922]
  83. Front Microbiol. 2017 Sep 01;8:1666 [PMID: 28919884]
  84. Toxicol Sci. 2020 Sep 1;177(1):168-187 [PMID: 32544245]
  85. Arch Toxicol. 2024 Jan;98(1):159-163 [PMID: 37917334]
  86. Nat Biotechnol. 2013 Sep;31(9):814-21 [PMID: 23975157]
  87. Nat Protoc. 2020 Mar;15(3):799-821 [PMID: 31942082]
  88. Front Microbiol. 2018 Apr 19;9:757 [PMID: 29725324]
  89. Environ Toxicol Pharmacol. 2023 Sep;102:104245 [PMID: 37572994]
  90. Front Microbiol. 2022 Nov 04;13:1009502 [PMID: 36406395]
  91. Environ Sci Technol. 2010 Apr 15;44(8):2822-7 [PMID: 19957996]
  92. Brain Behav Immun. 2020 Aug;88:308-324 [PMID: 32229219]
  93. Toxicol Appl Pharmacol. 2014 Sep 15;279(3):380-390 [PMID: 24998970]
  94. Ecotoxicol Environ Saf. 2022 May 1;236:113448 [PMID: 35367886]
  95. Virulence. 2017 Apr 3;8(3):297-309 [PMID: 27589415]
  96. Toxicol Rep. 2021 Mar 10;8:536-547 [PMID: 33777700]
  97. Toxicol Lett. 2018 Jun 1;289:28-41 [PMID: 29518472]
  98. Environ Sci Technol. 2020 Dec 15;54(24):15976-15985 [PMID: 33256405]
  99. Prog Mol Biol Transl Sci. 2020;176:111-122 [PMID: 33814112]
  100. Front Immunol. 2022 Mar 04;13:846469 [PMID: 35309351]
  101. Environ Sci Technol. 2021 Jul 20;55(14):9460-9468 [PMID: 34033460]
  102. Environ Sci Technol. 2017 Jul 18;51(14):7853-7860 [PMID: 28656752]
  103. World J Gastroenterol. 2011 Mar 28;17(12):1519-28 [PMID: 21472114]
  104. Environ Sci Pollut Res Int. 2016 Feb;23(3):2128-37 [PMID: 26400242]
  105. J Microbiol. 2018 Mar;56(3):199-208 [PMID: 29492877]
  106. Nucleic Acids Res. 2017 Jul 3;45(W1):W180-W188 [PMID: 28449106]
  107. Environ Toxicol Pharmacol. 2024 Sep;110:104520 [PMID: 39067718]
  108. PeerJ. 2017 Sep 11;5:e3698 [PMID: 28924494]
  109. Front Pharmacol. 2020 Oct 29;11:569008 [PMID: 33250767]

Grants

  1. P30 ES005605/NIEHS NIH HHS
  2. R01 ES031098/NIEHS NIH HHS
  3. P30 CA086862/NCI NIH HHS
  4. T32 HL166134/NHLBI NIH HHS
  5. P42 ES013661/NIEHS NIH HHS
  6. R01 ES034691/NIEHS NIH HHS
  7. R01 ES014901/NIEHS NIH HHS

MeSH Term

Animals
Polychlorinated Biphenyls
Rats, Sprague-Dawley
Gastrointestinal Microbiome
Gastrointestinal Tract
Male
Inhalation Exposure
Rats
Environmental Pollutants

Chemicals

Polychlorinated Biphenyls
Environmental Pollutants

Word Cloud

Created with Highcharts 10.0.0PCB52tractinhalationGImicrobiomemetaboliteslevelsthroughoutPolychlorinatedbiphenylsPCBspresentPCBaffectsintestinalmicrobialcommunitiesgastrointestinalperdaysalteredpredictedgutdifferentchanges25hazardousenvironmentalcontaminantsindooroutdoorenvironmentsOralexposurecolonhoweverunknownaltershypothesizesub-acutedependinglocationlocalprofilesfollowingmucociliaryclearancebiliaryexcretionSprague-Dawleyratsexposedvianose-only4 hday7week4weekseitherfilteredair28differencescharacterizedtaxaabundancesfunctionsalterationsoccurringlargeintestinemetabolitevariedacrossresultingdiffering× microbiomenetworksThuspresencepartsvaryingeffectscompositionfunctionFuturestudiesneedinvestigatewhetherleadadverseoutcomesInhalation2'5'-tetrachlorobiphenylcauses2′5′-tetrachlorobiphenylMicrobiomeNose-onlyPersistentorganicpollutants

Similar Articles

Cited By