The role of an intramolecular hydrogen bond in the redox properties of carboxylic acid naphthoquinones.

Walter D Guerra, Emmanuel Odella, Kai Cui, Maxim Secor, Rodrigo E Dominguez, Edwin J Gonzalez, Thomas A Moore, Sharon Hammes-Schiffer, Ana L Moore
Author Information
  1. Walter D Guerra: School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA amoore@asu.edu. ORCID
  2. Emmanuel Odella: School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA amoore@asu.edu. ORCID
  3. Kai Cui: Department of Chemistry, Princeton University Princeton New Jersey 08544 USA shs566@princeton.edu. ORCID
  4. Maxim Secor: Department of Chemistry, Princeton University Princeton New Jersey 08544 USA shs566@princeton.edu. ORCID
  5. Rodrigo E Dominguez: School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA amoore@asu.edu. ORCID
  6. Edwin J Gonzalez: School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA amoore@asu.edu. ORCID
  7. Thomas A Moore: School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA amoore@asu.edu. ORCID
  8. Sharon Hammes-Schiffer: Department of Chemistry, Princeton University Princeton New Jersey 08544 USA shs566@princeton.edu. ORCID
  9. Ana L Moore: School of Molecular Sciences, Arizona State University Tempe Arizona 85287-1604 USA amoore@asu.edu. ORCID

Abstract

A bioinspired naphthoquinone model of the quinones in photosynthetic reaction centers but bearing an intramolecular hydrogen-bonded carboxylic acid has been synthesized and characterized electrochemically, spectroscopically, and computationally to provide mechanistic insight into the role of proton-coupled electron transfer (PCET) of quinone reduction in photosynthesis. The reduction potential of this construct is 370 mV more positive than the unsubstituted naphthoquinone. In addition to the reversible cyclic voltammetry, infrared spectroelectrochemistry confirms that the naphthoquinone/naphthoquinone radical anion couple is fully reversible. Calculated redox potentials agree with the experimental trends arising from the intramolecular hydrogen bond. Molecular electrostatic potentials illustrate the reversible proton transfer driving forces, and analysis of the computed vibrational spectra supports the possibility of a combination of electron transfer and PCET processes. The significance of PCET, reversibility, and redox potential management relevant to the design of artificial photosynthetic assemblies involving PCET processes is discussed.

References

  1. Chem Sci. 2019 May 9;10(21):5624-5633 [PMID: 31293747]
  2. J Phys Chem A. 2012 Apr 5;116(13):3347-58 [PMID: 22435604]
  3. J Am Chem Soc. 2016 Feb 3;138(4):1349-58 [PMID: 26800279]
  4. Photochem Photobiol Sci. 2019 Oct 9;18(10):2430-2441 [PMID: 31380531]
  5. J Am Chem Soc. 2020 Dec 30;142(52):21842-21851 [PMID: 33337139]
  6. FEBS Lett. 1990 Jun 18;266(1-2):59-62 [PMID: 2365070]
  7. J Am Chem Soc. 2007 May 16;129(19):6199-203 [PMID: 17444643]
  8. Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21045-21051 [PMID: 32801212]
  9. FEBS Lett. 1990 Sep 3;269(2):363-7 [PMID: 15452972]
  10. Nature. 2011 May 5;473(7345):55-60 [PMID: 21499260]
  11. Biochim Biophys Acta. 1984 Oct 16;801(3):351-9 [PMID: 6487650]
  12. Biochim Biophys Acta. 2007 Jun;1767(6):541-9 [PMID: 17442262]
  13. Angew Chem Int Ed Engl. 2014 Feb 17;53(8):2056-77 [PMID: 24446164]
  14. ACS Cent Sci. 2020 Feb 26;6(2):304-311 [PMID: 32123749]
  15. Biochim Biophys Acta Bioenerg. 2020 Jun 1;1861(5-6):148173 [PMID: 32059842]
  16. Inorg Chem. 2003 Aug 25;42(17):5173-84 [PMID: 12924888]
  17. Acc Chem Res. 2021 Dec 21;54(24):4462-4473 [PMID: 34894649]
  18. J Am Chem Soc. 2018 Nov 14;140(45):15450-15460 [PMID: 30379075]
  19. J Am Chem Soc. 2017 Nov 15;139(45):16282-16288 [PMID: 29017321]
  20. Chem Rev. 2008 Jul;108(7):2145-79 [PMID: 18620365]
  21. Inorg Chem. 2014 Jul 7;53(13):6427-43 [PMID: 24731018]
  22. J Am Chem Soc. 2022 Aug 31;144(34):15672-15679 [PMID: 35993888]
  23. J Am Chem Soc. 2020 Nov 18;142(46):19678-19688 [PMID: 33167610]
  24. Phys Chem Chem Phys. 2012 Feb 28;14(8):2685-92 [PMID: 22258761]
  25. Inorg Chem. 2012 Jun 4;51(11):6333-44 [PMID: 22621319]
  26. FEBS Lett. 1975 Nov 15;59(2):137-9 [PMID: 1227927]
  27. J Am Chem Soc. 2006 Jul 12;128(27):8726-7 [PMID: 16819855]
  28. Angew Chem Int Ed Engl. 2015 Dec 1;54(49):14638-58 [PMID: 26530485]
  29. Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):9267-9272 [PMID: 28814630]
  30. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1325-9 [PMID: 8381964]
  31. Photosynth Res. 2023 Jun;156(3):279-307 [PMID: 36826741]
  32. J Am Chem Soc. 2016 Dec 14;138(49):15903-15910 [PMID: 27960306]
  33. Acc Chem Res. 2001 Jan;34(1):40-8 [PMID: 11170355]

Grants

  1. R35 GM139449/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0PCETintramoleculartransferreversibleredoxnaphthoquinonephotosyntheticcarboxylicacidroleelectronreductionpotentialpotentialshydrogenbondprocessesbioinspiredmodelquinonesreactioncentersbearinghydrogen-bondedsynthesizedcharacterizedelectrochemicallyspectroscopicallycomputationallyprovidemechanisticinsightproton-coupledquinonephotosynthesisconstruct370mVpositiveunsubstitutedadditioncyclicvoltammetryinfraredspectroelectrochemistryconfirmsnaphthoquinone/naphthoquinoneradicalanioncouplefullyCalculatedagreeexperimentaltrendsarisingMolecularelectrostaticillustrateprotondrivingforcesanalysiscomputedvibrationalspectrasupportspossibilitycombinationsignificancereversibilitymanagementrelevantdesignartificialassembliesinvolvingdiscussedpropertiesnaphthoquinones

Similar Articles

Cited By

No available data.