Causal relationships between obesity-related anthropometric indicators and sepsis risk: a Mendelian-randomization study.

Chuchu Zhang, Jiajia Ren, Xi Xu, Hua Lei, Guorong Deng, Jueheng Liu, Xiaoming Gao, Jiamei Li, Xiaochuang Wang, Gang Wang
Author Information
  1. Chuchu Zhang: Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
  2. Jiajia Ren: Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
  3. Xi Xu: Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
  4. Hua Lei: Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
  5. Guorong Deng: Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
  6. Jueheng Liu: Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
  7. Xiaoming Gao: Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
  8. Jiamei Li: Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
  9. Xiaochuang Wang: Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
  10. Gang Wang: Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.

Abstract

Background: Previous studies have reported an association between obesity and risk of sepsis. However, the results have been inconsistent, and no causal inference can be drawn from them. Therefore, we conducted a Mendelian-randomization (MR) study to investigate causal relationships between available obesity-related anthropometric indicators and sepsis risk.
Methods: We performed MR analyses using genome-wide association study (GWAS) summary statistics on 14 anthropometric indicators [namely body mass index (BMI), waist and hip circumferences (WC, HC), basal metabolic rate (BMR), whole-body fat mass (WBFM), trunk fat mass (TFM), leg fat mass (LFM), arm fat mass (AFM), body fat percentage (BFP), whole-body fat-free mass (WBFFM), trunk fat-free mass (TFFM), leg fat-free mass (LFFM), arm fat-free mass (AFFM), and whole-body water mass (WBWM)], sepsis, critical care sepsis, and 28-day death due to sepsis from the UK Biobank and FinnGen cohort. The primary method of MR analysis was inverse variance-weighted average method. Sensitivity analyses, including heterogeneity and horizontal-pleiotropy tests, were conducted to assess the stability of the MR results. Additionally, we applied multiple-variable MR (MVMR) to evaluate the effect of BMI on the relationship between each anthropometric indicator and sepsis risk.
Results: Our MR analysis demonstrated causal relationships between 14 anthropometric indicators and sepsis of different severities. After we adjusted for BMI, MVMR analyses indicated that WC, BMR, LFM, WBFFM, TFFM, AFFM, and WBWM remained significantly associated with the presence of sepsis (all  < 0.05). A sensitivity analysis confirmed the reliability of our MR results, and no significant horizontal pleiotropy was detected.
Conclusion: This MR study revealed that increases in obesity-related anthropometric indicators had causal associations with a higher risk of sepsis, which might provide important insights for the identification of individuals at risk for sepsis in community and hospital settings.

Keywords

References

  1. J Cardiovasc Dev Dis. 2023 Feb 10;10(2): [PMID: 36826573]
  2. Int J Public Health. 2023 May 02;68:1605548 [PMID: 37205044]
  3. Obesity (Silver Spring). 2013 Dec;21(12):E762-9 [PMID: 23526732]
  4. Hum Mol Genet. 2014 Sep 15;23(R1):R89-98 [PMID: 25064373]
  5. Lancet. 2014 Aug 30;384(9945):766-81 [PMID: 24880830]
  6. Eur J Epidemiol. 2020 Apr;35(4):347-354 [PMID: 32307655]
  7. Eur J Vasc Endovasc Surg. 2007 Jun;33(6):696-702 [PMID: 17276097]
  8. Lancet. 2020 Jan 18;395(10219):200-211 [PMID: 31954465]
  9. Int J Obes (Lond). 2005 Jul;29(7):833-41 [PMID: 15917862]
  10. Front Endocrinol (Lausanne). 2022 Sep 29;13:1011896 [PMID: 36246900]
  11. Genet Epidemiol. 2016 May;40(4):304-14 [PMID: 27061298]
  12. Curr Opin Lipidol. 2015 Dec;26(6):566-71 [PMID: 26780009]
  13. Int J Mol Sci. 2023 Aug 30;24(17): [PMID: 37686271]
  14. Circulation. 2011 Jun 14;123(23):2749-69 [PMID: 21555711]
  15. Curr Opin Pharmacol. 2017 Dec;37:35-40 [PMID: 28843953]
  16. BMJ. 2018 Jul 12;362:k601 [PMID: 30002074]
  17. Am J Epidemiol. 2013 Oct 1;178(7):1177-84 [PMID: 23863760]
  18. JAMA. 2016 Feb 23;315(8):801-10 [PMID: 26903338]
  19. Hum Mol Genet. 2018 Oct 15;27(20):3641-3649 [PMID: 30124842]
  20. Int J Epidemiol. 2003 Feb;32(1):1-22 [PMID: 12689998]
  21. N Engl J Med. 2017 Aug 3;377(5):414-417 [PMID: 28658587]
  22. PLoS Med. 2020 Nov 16;17(11):e1003413 [PMID: 33196656]
  23. Genet Epidemiol. 2019 Sep;43(6):609-616 [PMID: 31045282]
  24. Int J Obes (Lond). 2018 Apr;42(4):801-807 [PMID: 29081504]
  25. JAMA. 2021 Oct 26;326(16):1614-1621 [PMID: 34698778]
  26. JAMA Netw Open. 2019 Nov 1;2(11):e1916345 [PMID: 31774526]
  27. Stat Methods Med Res. 2012 Jun;21(3):223-42 [PMID: 21216802]
  28. Front Genet. 2021 Sep 09;12:735541 [PMID: 34567085]
  29. Physiol Rev. 2008 Oct;88(4):1379-406 [PMID: 18923185]
  30. Eur J Clin Nutr. 2005 Feb;59(2):155-60 [PMID: 15340370]
  31. Int J Epidemiol. 2019 Dec 1;48(6):1783-1794 [PMID: 31292615]
  32. Int J Epidemiol. 2015 Apr;44(2):512-25 [PMID: 26050253]
  33. Stat Med. 2011 May 20;30(11):1312-23 [PMID: 21432888]
  34. Diabetes. 2014 Dec;63(12):3982-91 [PMID: 25414012]
  35. Crit Care Med. 2021 Nov 1;49(11):e1063-e1143 [PMID: 34605781]
  36. Respir Physiol Neurobiol. 2012 Aug 15;183(2):128-34 [PMID: 22721944]
  37. Nat Immunol. 2015 Apr;16(4):376-85 [PMID: 25729921]
  38. Int J Epidemiol. 2017 Oct 1;46(5):1573-1581 [PMID: 28637260]
  39. Sci Rep. 2023 Aug 1;13(1):12487 [PMID: 37528130]
  40. Lancet. 1989 Mar 25;1(8639):642-5 [PMID: 2564461]
  41. Ann Am Thorac Soc. 2022 Nov;19(11):1913-1919 [PMID: 35727232]
  42. J Am Med Dir Assoc. 2014 Jun;15(6):448.e1-6 [PMID: 24755478]
  43. J Am Coll Cardiol. 2011 May 10;57(19):1877-86 [PMID: 21545944]
  44. PLoS Genet. 2017 Nov 17;13(11):e1007081 [PMID: 29149188]
  45. PLoS Med. 2015 Mar 31;12(3):e1001779 [PMID: 25826379]
  46. Int J Epidemiol. 2021 Nov 10;50(5):1651-1659 [PMID: 33899104]
  47. BMC Nephrol. 2017 Apr 4;18(1):125 [PMID: 28376734]

Word Cloud

Created with Highcharts 10.0.0sepsismassMRanthropometricriskindicatorsfatcausalstudyfat-freeresultsrelationshipsobesity-relatedanalysesBMIwhole-bodyanalysisassociationobesityconductedMendelian-randomization14bodyWCBMRtrunklegLFMarmWBFFMTFFMAFFMWBWMmethodMVMRindicatorBackground:PreviousstudiesreportedHoweverinconsistentinferencecandrawnThereforeinvestigateavailableMethods:performedusinggenome-wideGWASsummarystatistics[namelyindexwaisthipcircumferencesHCbasalmetabolicrateWBFMTFMAFMpercentageBFPLFFMwater]criticalcare28-daydeathdueUKBiobankFinnGencohortprimaryinversevariance-weightedaverageSensitivityincludingheterogeneityhorizontal-pleiotropytestsassessstabilityAdditionallyappliedmultiple-variableevaluateeffectrelationshipResults:demonstrateddifferentseveritiesadjustedindicatedremainedsignificantlyassociatedpresence< 005sensitivityconfirmedreliabilitysignificanthorizontalpleiotropydetectedConclusion:revealedincreasesassociationshighermightprovideimportantinsightsidentificationindividualscommunityhospitalsettingsCausalrisk:Mendelianrandomizationinflammation

Similar Articles

Cited By