PM prediction based on modified whale optimization algorithm and support vector regression.

Zuhan Liu, Xin Huang, Xing Wang
Author Information
  1. Zuhan Liu: School of Information Engineering, Nanchang Institute of Technology, Nanchang, 330099, China. lzh512@nit.edu.cn.
  2. Xin Huang: School of Information Engineering, Nanchang Institute of Technology, Nanchang, 330099, China.
  3. Xing Wang: School of Information Engineering, Nanchang Institute of Technology, Nanchang, 330099, China.

Abstract

In order to obtain the pattern of variation of PMconcentrations in the atmosphere in Nanchang City, we build a Support Vector Regression(SVR) with modified Whale Optimization Algorithm(WOA) hybrid model (namely mWOA-SVR model) that can predict the PMconcentration. Firstly, according to the Pearson correlation coefficient (PCC) method to examine the dynamic relationship between air pollutants and meteorological factors together with them, PM, SOand CO were selected as air pollutant concentration characteristics, while daily maximum and minimum temperatures, and wind power levels were selected as meteorological characteristics; then, using modified WOA algorithm for parameter selection of SVR model, four sets of better parameter combinations were found; finally, the mWOA-SVR model was built by the four sets parameters to predict PMconcentration. The results show that the prediction accuracy of mixed mWOA-SVR model with pollutant concentration plus weather factors as the feature was higher than single pollutant concentration.

Keywords

References

  1. J Environ Manage. 2023 Oct 15;344:118446 [PMID: 37352627]
  2. Evol Comput. 2006 Fall;14(3):291-308 [PMID: 16903795]
  3. Rev Sci Instrum. 2021 Dec 1;92(12):125102 [PMID: 34972473]
  4. Environ Pollut. 2022 Aug 1;306:119348 [PMID: 35487466]
  5. PLoS One. 2022 Mar 11;17(3):e0264833 [PMID: 35275966]
  6. Biom J. 2018 May;60(3):431-449 [PMID: 29292533]
  7. IEEE Trans Cybern. 2021 Dec;51(12):5897-5906 [PMID: 31945004]
  8. Sci Rep. 2023 Mar 7;13(1):3783 [PMID: 36882446]
  9. Heliyon. 2024 Jun 19;10(12):e33332 [PMID: 39022081]
  10. Environ Pollut. 2020 Aug;263(Pt A):114635 [PMID: 33618491]
  11. Sci Rep. 2024 Apr 26;14(1):9650 [PMID: 38671144]
  12. Sci Rep. 2024 Jul 26;14(1):17142 [PMID: 39060268]
  13. J Hazard Mater. 2023 Sep 15;458:132044 [PMID: 37451104]
  14. Environ Pollut. 2024 Apr 15;347:123718 [PMID: 38447651]
  15. Environ Monit Assess. 2024 Jul 15;196(8):732 [PMID: 39004632]
  16. PLoS One. 2022 May 19;17(5):e0267041 [PMID: 35588402]
  17. Sci Total Environ. 2019 Dec 15;696:133983 [PMID: 31461697]
  18. Sci Total Environ. 2023 May 15;873:162336 [PMID: 36813194]
  19. Environ Monit Assess. 2024 Apr 24;196(5):468 [PMID: 38656463]

Grants

  1. 42261077/National Natural Science Foundation of China

Word Cloud

Created with Highcharts 10.0.0modelconcentrationmodifiedmWOA-SVRpollutantSupportSVRWhaleWOApredictPMconcentrationairmeteorologicalfactorsPMselectedcharacteristicsalgorithmparameterfoursetspredictionoptimizationvectorregressionorderobtainpatternvariationPMconcentrationsatmosphereNanchangCitybuildVectorRegressionOptimizationAlgorithmhybridnamelycanFirstlyaccordingPearsoncorrelationcoefficientPCCmethodexaminedynamicrelationshippollutantstogetherSOandCOdailymaximumminimumtemperatureswindpowerlevelsusingselectionbettercombinationsfoundfinallybuiltparametersresultsshowaccuracymixedplusweatherfeaturehighersinglebasedwhalesupportCorrelationanalysisPM25calculation

Similar Articles

Cited By