Study of transport, tissue distribution, depletion, and hepatotoxicity of Cyadox, a quinoxaline-1,4-dioxide derivative.

Zhu Tao, Changchun Li, Aiqun Zhang, Zhilin Zhang, Jing Huang, Sechenchogt Harnud
Author Information
  1. Zhu Tao: Research Center for Ecotoxicology and Food Safety, Hubei Engineering University, Xiaogan, China.
  2. Changchun Li: College of Life Science and Technology, Hubei Engineering University, Xiaogan, China.
  3. Aiqun Zhang: Research Center for Ecotoxicology and Food Safety, Hubei Engineering University, Xiaogan, China.
  4. Zhilin Zhang: College of Life Science and Technology, Hubei Engineering University, Xiaogan, China.
  5. Jing Huang: College of Life Science and Technology, Hubei Engineering University, Xiaogan, China.
  6. Sechenchogt Harnud: Research Center for Ecotoxicology and Food Safety, Hubei Engineering University, Xiaogan, China.

Abstract

Background: Cyadox (CYA) is a derivative of quinoxaline 1,4-dioxide and a safe and effective synthetic antibacterial agent.
Objective: This study aimed to explore the drug transport in blood, distribution, depletion and hepatotoxicity of drugs in animals.
Methods: The transport of CYA in blood was studied using fluorescence, circular dichroism (CD) and molecular docking methods. Tissue distribution and depletion of CYA in rats were evaluated following oral administration of [3H]-CYA at different doses. Hepatotoxicity of drugs evaluated by transcriptomics.
Results: During transport in the bloodstream, the drug binds to bovine serum albumin (BSA) by hydrogen bonding and has only one binding site. Hydrogen bonds were formed between O (2) of CYA and ARG208, O (3) of CYA and LEU480, VAL481. The secondary protein conformation of BSA changed after binding with an increase in ��-helix and a decrease in ��-strand. After a single oral administration of [H]-CYA, it was excreted rapidly within 7 days, with 34.81% from the urine and 60.25% from the feces. Higher and sustained levels of radioactivity were detected in the liver during the post-dose period, suggesting that the drug may concentrate in the liver. The transcriptomic data indicates that CYA exhibits low hepatotoxicity. However, there are indications that it may have an impact on steroid biosynthesis.
Conclusion: This study could serve as a basis for conducting further studies on the use of CYA in food animals and improving the pharmacologic, pharmacokinetic, and toxicologic effects of CYA on food animals.

Keywords

References

  1. Mol Cell Probes. 2022 Aug;64:101820 [PMID: 35504488]
  2. J Chromatogr B Analyt Technol Biomed Life Sci. 2008 Oct 15;874(1-2):7-14 [PMID: 18838344]
  3. Eur J Med Chem. 2023 Nov 5;259:115658 [PMID: 37480712]
  4. Regul Toxicol Pharmacol. 2010 Jul-Aug;57(2-3):307-14 [PMID: 20371258]
  5. Regul Toxicol Pharmacol. 2015 Nov;73(2):652-9 [PMID: 26408151]
  6. J Pharm Biomed Anal. 2012 Aug-Sep;67-68:175-85 [PMID: 22565170]
  7. Food Chem Toxicol. 2013 Jan;51:330-6 [PMID: 23063596]
  8. Bioorg Chem. 2022 Oct;127:106017 [PMID: 35841666]
  9. Spectrochim Acta A Mol Biomol Spectrosc. 2022 Oct 5;278:121383 [PMID: 35597157]
  10. Biochim Biophys Acta Mol Basis Dis. 2024 Mar;1870(3):167045 [PMID: 38306800]
  11. J Mol Recognit. 2020 Jun;33(6):e2834 [PMID: 32017307]
  12. Cell Chem Biol. 2019 Apr 18;26(4):593-599.e4 [PMID: 30773481]
  13. Regul Toxicol Pharmacol. 2016 Feb;74:123-36 [PMID: 26617409]
  14. J Vet Pharmacol Ther. 2018 Feb;41(1):125-136 [PMID: 29194660]
  15. Prev Med. 2023 Aug;173:107576 [PMID: 37329988]
  16. Xenobiotica. 2011 Nov;41(11):964-71 [PMID: 21745143]
  17. Int Immunopharmacol. 2023 Apr;117:110039 [PMID: 36944277]
  18. EFSA J. 2017 Oct 17;15(10):e05022 [PMID: 32625312]
  19. Rapid Commun Mass Spectrom. 2011 Aug 30;25(16):2333-44 [PMID: 21766376]
  20. Poult Sci. 2024 Jan;103(1):103200 [PMID: 37939591]
  21. Biomed Pharmacother. 2023 Mar;159:114254 [PMID: 36669362]
  22. Rapid Commun Mass Spectrom. 2009 Jul;23(13):2026-34 [PMID: 19504544]
  23. Curr Pharm Des. 2004;10(24):2991-3008 [PMID: 15379664]
  24. ACS Omega. 2022 Sep 19;7(38):34370-34377 [PMID: 36188253]
  25. Poult Sci. 2024 May;103(5):103589 [PMID: 38471223]
  26. Toxicol Appl Pharmacol. 2011 May 1;252(3):281-8 [PMID: 21377486]
  27. J Mol Recognit. 2022 Apr;35(4):e2948 [PMID: 35094438]
  28. Regul Toxicol Pharmacol. 2017 Jul;87:9-22 [PMID: 28454720]
  29. J Agric Food Chem. 2013 Oct 2;61(39):9510-5 [PMID: 24050441]
  30. Exp Cell Res. 2019 Oct 15;383(2):111512 [PMID: 31356817]

Word Cloud

Created with Highcharts 10.0.0CYAtransportdistributionhepatotoxicitydrugdepletionanimalsCyadoxderivative4-dioxidestudyblooddrugsdockingevaluatedoraladministrationBSAbindingOlivermayfoodBackground:quinoxaline1safeeffectivesyntheticantibacterialagentObjective:aimedexploreMethods:studiedusingfluorescencecirculardichroismCDmolecularmethodsTissueratsfollowing[3H]-CYAdifferentdosesHepatotoxicitytranscriptomicsResults:bloodstreambindsbovineserumalbuminhydrogenbondingonesiteHydrogenbondsformed2ARG2083LEU480VAL481secondaryproteinconformationchangedincrease��-helixdecrease��-strandsingle[H]-CYAexcretedrapidlywithin7 days3481%urine6025%fecesHighersustainedlevelsradioactivitydetectedpost-doseperiodsuggestingconcentratetranscriptomicdataindicatesexhibitslowHoweverindicationsimpactsteroidbiosynthesisConclusion:servebasisconductingstudiesuseimprovingpharmacologicpharmacokinetictoxicologiceffectsStudytissuequinoxaline-1cyadoxradioisotopictracing

Similar Articles

Cited By