Elevated plasma and CSF neurofilament light chain concentrations are stabilized in response to mutant huntingtin lowering in the brains of Huntington's disease mice.

Nicholas S Caron, Lauren M Byrne, Fanny L Lemarié, Jeffrey N Bone, Amirah E-E Aly, Seunghyun Ko, Christine Anderson, Lorenzo L Casal, Austin M Hill, David J Hawellek, Peter McColgan, Edward J Wild, Blair R Leavitt, Michael R Hayden
Author Information
  1. Nicholas S Caron: Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada. ORCID
  2. Lauren M Byrne: UCL Huntington's Disease Centre, University College London Queen Square Institute of Neurology, London, WC1N 3BG, UK.
  3. Fanny L Lemarié: Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.
  4. Jeffrey N Bone: BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada.
  5. Amirah E-E Aly: Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.
  6. Seunghyun Ko: Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.
  7. Christine Anderson: Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.
  8. Lorenzo L Casal: Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.
  9. Austin M Hill: Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.
  10. David J Hawellek: Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland.
  11. Peter McColgan: Roche Products Ltd., Welwyn Garden City, AL7 1TW, United Kingdom.
  12. Edward J Wild: UCL Huntington's Disease Centre, University College London Queen Square Institute of Neurology, London, WC1N 3BG, UK.
  13. Blair R Leavitt: Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.
  14. Michael R Hayden: Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada. mrh@cmmt.ubc.ca. ORCID

Abstract

BACKGROUND: Therapeutic approaches aimed at lowering toxic mutant huntingtin (mHTT) levels in the brain can reverse disease phenotypes in animal models of Huntington's disease (HD) and are currently being evaluated in clinical trials. Sensitive and dynamic response biomarkers are needed to assess the efficacy of such candidate therapies. Neurofilament light chain (NfL) is a biomarker of neurodegeneration that increases in cerebrospinal fluid (CSF) and blood with progression of HD. However, it remains unknown whether NfL in biofluids could serve as a response biomarker for assessing the efficacy of disease-modifying therapies for HD.
METHODS: Longitudinal plasma and cross-sectional CSF samples were collected from the YAC128 transgenic mouse model of HD and wild-type (WT) littermate control mice throughout the natural history of disease. Additionally, biofluids were collected from YAC128 mice following intracerebroventricular administration of an antisense oligonucleotide (ASO) targeting the mutant HTT transgene (HTT ASO), at ages both before and after the onset of disease phenotypes. NfL concentrations in plasma and CSF were quantified using ultrasensitive single-molecule array technology.
RESULTS: Plasma and CSF NfL concentrations were significantly elevated in YAC128 compared to WT littermate control mice from 9 months of age. Treatment of YAC128 mice with either 15 or 50 µg HTT ASO resulted in a dose-dependent, allele-selective reduction of mHTT throughout the brain at a 3-month interval, which was sustained with high-dose HTT ASO treatment for up to 6 months. Lowering of brain mHTT prior to the onset of regional brain atrophy and HD-like motor deficits in this model had minimal effect on plasma NfL at either dose, but led to a dose-dependent reduction of CSF NfL. In contrast, initiating mHTT lowering in the brain after the onset of neuropathological and behavioural phenotypes in YAC128 mice resulted in a dose-dependent stabilization of NfL increases in both plasma and CSF.
CONCLUSIONS: Our data provide evidence that the response of NfL in biofluids is influenced by the magnitude of mHTT lowering in the brain and the timing of intervention, suggesting that NfL may serve as a promising exploratory response biomarker for HD.

Keywords

References

  1. J Huntingtons Dis. 2021;10(3):355-365 [PMID: 34092649]
  2. PLoS One. 2018 Feb 23;13(2):e0193492 [PMID: 29474427]
  3. J Neurosci. 2005 Apr 20;25(16):4169-80 [PMID: 15843620]
  4. JAMA Neurol. 2017 May 1;74(5):557-566 [PMID: 28346578]
  5. Sci Transl Med. 2020 Dec 16;12(574): [PMID: 33328328]
  6. Nat Med. 2019 Feb;25(2):277-283 [PMID: 30664784]
  7. Ann Neurol. 2016 Aug;80(2):185-201 [PMID: 27255697]
  8. J Chem Neuroanat. 2004 Jun;27(3):143-64 [PMID: 15183201]
  9. Hum Mol Genet. 2018 Jun 15;27(12):2125-2137 [PMID: 29668904]
  10. Sci Rep. 2017 Oct 26;7(1):14114 [PMID: 29074982]
  11. Gene Ther. 2017 Oct;24(10):630-639 [PMID: 28771234]
  12. Mol Ther. 2014 Dec;22(12):2093-2106 [PMID: 25101598]
  13. N Engl J Med. 2023 Dec 7;389(23):2203-2205 [PMID: 38055260]
  14. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5733-7 [PMID: 2456581]
  15. Parkinsonism Relat Disord. 2011 Nov;17(9):714-5 [PMID: 21733739]
  16. Neurobiol Dis. 2022 May;166:105652 [PMID: 35143966]
  17. Neurology. 2019 Sep 10;93(11):e1104-e1111 [PMID: 31420461]
  18. Neurology. 2018 Feb 20;90(8):e717-e723 [PMID: 29367444]
  19. Lancet Neurol. 2020 Jun;19(6):502-512 [PMID: 32470422]
  20. Sci Rep. 2015 Jul 15;5:12166 [PMID: 26174131]
  21. JAMA Neurol. 2017 May 1;74(5):525-532 [PMID: 28264096]
  22. Neurobiol Aging. 1985 Winter;6(4):331-6 [PMID: 2935745]
  23. Nucleic Acids Res. 2020 Jan 10;48(1):36-54 [PMID: 31745548]
  24. Nucleic Acids Res. 2023 Aug 11;51(14):7109-7124 [PMID: 37188501]
  25. Nat Commun. 2020 Feb 10;11(1):812 [PMID: 32041951]
  26. Brain Commun. 2024 Feb 07;6(1):fcae030 [PMID: 38370446]
  27. PLoS One. 2019 Mar 26;14(3):e0213521 [PMID: 30913220]
  28. Neurobiol Dis. 2011 Jul;43(1):257-65 [PMID: 21458571]
  29. Neuroscience. 2000;97(3):505-19 [PMID: 10828533]
  30. Neurosci Lett. 1991 Dec 9;133(2):257-61 [PMID: 1840078]
  31. J Neurol Neurosurg Psychiatry. 1998 Mar;64(3):402-4 [PMID: 9527161]
  32. Science. 1983 Jan 21;219(4582):316-8 [PMID: 6849138]
  33. Neurology. 2014 Apr 29;82(17):1499-507 [PMID: 24682973]
  34. Stem Cells. 2020 Feb;38(2):218-230 [PMID: 31648394]
  35. Nat Rev Drug Discov. 2018 Oct;17(10):729-750 [PMID: 30237454]
  36. BMC Neurosci. 2006 Dec 05;7:80 [PMID: 17147801]
  37. Neurology. 2015 Apr 21;84(16):1639-43 [PMID: 25809304]
  38. Sci Rep. 2016 Nov 07;6:36791 [PMID: 27819296]
  39. J Neurol. 2019 Sep;266(9):2129-2136 [PMID: 31123861]
  40. J Control Release. 2024 Mar;367:27-44 [PMID: 38215984]
  41. Neurology. 2009 Apr 14;72(15):1322-9 [PMID: 19365053]
  42. Sci Transl Med. 2012 Aug 15;4(147):147ra111 [PMID: 22896675]
  43. Neurobiol Dis. 2021 Jun;153:105311 [PMID: 33636389]
  44. Mult Scler. 2014 Jan;20(1):43-50 [PMID: 23702432]
  45. Ann Neurol. 2011 Jan;69(1):83-9 [PMID: 21280078]
  46. Brain Res Bull. 2012 Jun 1;88(2-3):113-20 [PMID: 20460143]
  47. Sci Transl Med. 2018 Oct 3;10(461): [PMID: 30282695]
  48. Hum Mol Genet. 2012 May 15;21(10):2219-32 [PMID: 22328089]
  49. N Engl J Med. 2017 Nov 2;377(18):1723-1732 [PMID: 29091570]
  50. Lancet Neurol. 2017 Aug;16(8):601-609 [PMID: 28601473]
  51. Science. 2020 Oct 2;370(6512):50-56 [PMID: 33004510]
  52. N Engl J Med. 2019 Jun 13;380(24):2307-2316 [PMID: 31059641]
  53. Hum Mol Genet. 2003 Jul 1;12(13):1555-67 [PMID: 12812983]
  54. Neuron. 2012 Jun 21;74(6):1031-44 [PMID: 22726834]
  55. Mov Disord. 2021 Feb;36(2):492-497 [PMID: 33006791]
  56. Ann Neurol. 2020 Mar;87(3):357-369 [PMID: 31916277]
  57. Neurology. 2017 Jun 13;88(24):2302-2309 [PMID: 28500227]
  58. Mult Scler. 2017 Jan;23(1):62-71 [PMID: 27003946]
  59. J Clin Invest. 2015 May;125(5):1979-86 [PMID: 25844897]
  60. Neurology. 2021 Dec 14;97(24):e2404-e2413 [PMID: 34706976]
  61. Neurology. 2004 Nov 9;63(9):1586-90 [PMID: 15534240]
  62. Mol Neurodegener. 2019 Nov 4;14(1):39 [PMID: 31684998]
  63. Parkinsonism Relat Disord. 2009 Mar;15(3):245-8 [PMID: 19056308]
  64. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8727-32 [PMID: 10411943]
  65. Mov Disord. 2020 Nov;35(11):1999-2008 [PMID: 32798333]
  66. Sci Transl Med. 2018 Sep 12;10(458): [PMID: 30209243]
  67. J Neurochem. 2016 Oct;139(1):22-5 [PMID: 27344050]
  68. Neurology. 2017 May 9;88(19):1788-1794 [PMID: 28404801]
  69. Acta Neuropathol. 1994;88(4):320-33 [PMID: 7839825]
  70. J Neuropathol Exp Neurol. 1985 Nov;44(6):559-77 [PMID: 2932539]
  71. PLoS One. 2016 Sep 22;11(9):e0163479 [PMID: 27657730]
  72. Mov Disord. 2023 Jul;38(7):1307-1315 [PMID: 37148558]
  73. Neurology. 2017 Feb 28;88(9):826-831 [PMID: 28148632]
  74. Brain Commun. 2022 Nov 25;4(6):fcac309 [PMID: 36523269]
  75. Cell. 1993 Mar 26;72(6):971-83 [PMID: 8458085]
  76. Mov Disord. 2021 Feb;36(2):481-491 [PMID: 33247616]
  77. Hum Gene Ther. 2014 May;25(5):461-74 [PMID: 24484067]
  78. EBioMedicine. 2015 Nov 22;3:135-140 [PMID: 26870824]
  79. Ann Neurol. 1990 Feb;27(2):200-4 [PMID: 2138444]
  80. J Neurol Sci. 2005 Jun 15;233(1-2):183-98 [PMID: 15896809]
  81. Brain Commun. 2023 Aug 18;5(5):fcad214 [PMID: 37744022]
  82. J Neurol Neurosurg Psychiatry. 2019 Sep;90(9):1068-1069 [PMID: 30630960]
  83. Transl Neurodegener. 2023 May 15;12(1):30 [PMID: 37287074]
  84. Neurology. 2017 Nov 28;89(22):2230-2237 [PMID: 29079686]
  85. Science. 1997 Sep 26;277(5334):1990-3 [PMID: 9302293]
  86. N Engl J Med. 2022 Sep 22;387(12):1099-1110 [PMID: 36129998]
  87. PLoS One. 2015 Jul 02;10(7):e0132177 [PMID: 26136237]
  88. PLoS One. 2017 Feb 27;12(2):e0172762 [PMID: 28241046]
  89. Front Neurol. 2018 Dec 14;9:1037 [PMID: 30631300]
  90. Ann Neurol. 2017 Jun;81(6):857-870 [PMID: 28512753]
  91. J Neurosci. 2021 Jan 27;41(4):780-796 [PMID: 33310753]
  92. Mol Ther Nucleic Acids. 2022 May 05;28:702-715 [PMID: 35664700]
  93. Ann Neurol. 2014 Dec;76(6):845-61 [PMID: 25204284]

MeSH Term

Animals
Huntington Disease
Huntingtin Protein
Neurofilament Proteins
Mice, Transgenic
Mice
Disease Models, Animal
Brain
Biomarkers
Oligonucleotides, Antisense
Male

Chemicals

Huntingtin Protein
Neurofilament Proteins
neurofilament protein L
Biomarkers
Oligonucleotides, Antisense
Htt protein, mouse

Word Cloud

Created with Highcharts 10.0.0NfLCSFbraindiseasemiceloweringmHTTHDresponseplasmaYAC128biomarkerASOHTTmutantphenotypesHuntington'slightchainbiofluidsonsetconcentrationsdose-dependenthuntingtinefficacytherapiesNeurofilamentincreasesfluidcollectedmodelWTlittermatecontrolthroughoutPlasmaeitherresultedreductionBACKGROUND:Therapeuticapproachesaimedtoxic levelscanreverseanimalmodelscurrentlyevaluatedclinicaltrialsSensitivedynamicbiomarkersneededassesscandidateneurodegenerationcerebrospinalbloodprogression ofHoweverremainsunknownwhetherserve asassessingdisease-modifyingMETHODS:Longitudinalcross-sectionalsamplestransgenicmousewild-typenaturalhistoryAdditionallyfollowingintracerebroventricularadministrationantisenseoligonucleotide targetingtransgeneagesquantifiedusingultrasensitivesingle-moleculearraytechnologyRESULTS:significantlyelevatedcompared9 monthsageTreatment1550 µgallele-selective3-monthintervalsustainedhigh-dosetreatment6 monthsLoweringpriorregionalatrophyHD-likemotordeficits inminimaleffectdoseledcontrastinitiatingneuropathologicalbehaviouralstabilizationCONCLUSIONS:dataprovideevidenceinfluencedmagnitudetiminginterventionsuggestingmayservepromisingexploratoryElevatedneurofilamentstabilizedbrainsAntisenseoligonucleotideBiofluidsCerebrospinalHuntingtinResponse

Similar Articles

Cited By