Isotopic evaluation of the National Water Model reveals missing agricultural irrigation contributions to streamflow across the western United States.

Annie L Putman, Patrick C Longley, Morgan C McDonnell, James Reddy, Michelle Katoski, Olivia L Miller, J Ren��e Brooks
Author Information
  1. Annie L Putman: Utah Water Science Center, US Geological Survey, Salt Lake City, Utah, USA.
  2. Patrick C Longley: Colorado Water Science Center, US Geological Survey, Grand Junction, Colorado, USA.
  3. Morgan C McDonnell: Utah Water Science Center, US Geological Survey, Salt Lake City, Utah, USA.
  4. James Reddy: New York Water Science Center, US Geological Survey, Ithaca, New York, USA.
  5. Michelle Katoski: Maryland-Delaware Water Science Center, US Geological Survey, Baltimore, Maryland, USA.
  6. Olivia L Miller: Utah Water Science Center, US Geological Survey, Salt Lake City, Utah, USA.
  7. J Ren��e Brooks: Pacific Ecological Systems Division, US Environmental Protection Agency, Corvallis, Oregon, USA.

Abstract

The National Water Model (NWM) provides critical analyses and projections of streamflow that support Water management decisions. However, the NWM performs poorly in lower-elevation rivers of the western United States (US). The accuracy of the NWM depends on the fidelity of the model inputs and the representation and calibration of model processes and Water sources. To evaluate the NWM performance in the western US, we compared observations of river Water isotope ratios ( and expressed in notation) to NWM-flux-estimated (model) river reach isotope ratios. The modeled estimates were calculated from long-term (2000-2019) mean summer (June, July, and August) NWM hydrologic fluxes and gridded isotope ratios using a mass balance approach. The observational dataset comprised 4503 in-stream Water isotope observations in 877 reaches across 5 basins. A simple regression between observed and modeled isotope ratios explained 57.9 % ( ) and 67.1 % ( ) of variance, although observations were 0.5 ( ) and 4.8 ( ) higher, on average, than mass balance estimates. The unexplained variance suggest that the NWM does not include all relevant Water fluxes to rivers. To infer possible missing Water fluxes, we evaluated patterns in observation-model differences using ( ) and ( ). We detected evidence of evaporation in observations but not model estimates (negative and positive ) at lower-elevation, higher-stream-order, arid sites. The catchment actual-evaporation-to-precipitation ratio, the fraction of streamflow estimated to be derived from agricultural irrigation, and whether a site was reservoir-affected were all significant predictors of in a linear mixed-effects model, with up to 15.2 % of variance explained by fixed effects. This finding is supported by seasonal patterns, groundwater levels, and isotope ratios, and it suggests the importance of including irrigation return flows to rivers, especially in lower-elevation, higher-stream-order, arid rivers of the western US.

References

  1. Limnol Oceanogr. 2022 May;67(7):1484-1501 [PMID: 36212524]
  2. Oecologia. 2005 Apr;143(3):337-48 [PMID: 15726429]
  3. Sci Adv. 2019 Jun 19;5(6):eaav4574 [PMID: 31223647]
  4. Sci Data. 2020 Apr 3;7(1):109 [PMID: 32246091]
  5. Science. 1961 May 26;133(3465):1702-3 [PMID: 17814749]
  6. Environ Sci Technol. 2020 Apr 7;54(7):4336-4343 [PMID: 32216285]
  7. Ecol Indic. 2021 Jan 1;122: [PMID: 33897301]
  8. Science. 2020 Mar 13;367(6483):1252-1255 [PMID: 32079679]
  9. Nature. 2021 Mar;591(7850):391-395 [PMID: 33731949]
  10. PLoS One. 2022 Jan 7;17(1):e0261651 [PMID: 34995313]
  11. Hydrol Process. 2017 May 15;31(10):1913-1925 [PMID: 30294067]
  12. Environ Sci Technol. 2017 Sep 5;51(17):9477-9487 [PMID: 28730814]
  13. Nature. 2015 Sep 3;525(7567):91-4 [PMID: 26333467]
  14. Environ Sci Technol. 2021 Jun 15;55(12):7890-7899 [PMID: 34060819]
  15. Oecologia. 2018 Aug;187(4):1025-1039 [PMID: 29955987]
  16. Science. 2018 Aug 24;361(6404):748-750 [PMID: 30139857]
  17. Water Resour Res. 2017 Jul;53(7):5813-5830 [PMID: 28983132]
  18. Water Resour Res. 2021 Jul 1;57(7): [PMID: 34349298]
  19. Environ Sci Technol. 2016 Feb 2;50(3):1137-46 [PMID: 26744921]
  20. Nat Commun. 2021 Jul 9;12(1):4232 [PMID: 34244500]
  21. Hydrol Process. 2021 Mar 11;35(3): [PMID: 33854273]
  22. Sci Total Environ. 2017 Dec 1;599-600:581-596 [PMID: 28494284]
  23. J Am Water Resour Assoc. 2020 Jun 1;56(3):450-471 [PMID: 32699495]

Grants

  1. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.0NWMwaterisotopemodelratiosriverswesternobservationsstreamflowlower-elevationUSestimatesfluxes%varianceirrigationNationalWaterModelUnitedStatesrivermodeledusingmassbalanceacross5explainedmissingpatternshigher-stream-orderaridagriculturalprovidescriticalanalysesprojectionssupportmanagementdecisionsHoweverperformspoorlyaccuracydependsfidelityinputsrepresentationcalibrationprocessessourcesevaluateperformancecomparedexpressednotationNWM-flux-estimatedreachcalculatedlong-term2000-2019meansummerJuneJulyAugusthydrologicgriddedapproachobservationaldatasetcomprised4503in-stream877reachesbasinssimpleregressionobserved579671although048higheraverageunexplainedsuggestincluderelevantinferpossibleevaluatedobservation-modeldifferencesdetectedevidenceevaporationnegativepositivesitescatchmentactual-evaporation-to-precipitationratiofractionestimatedderivedwhethersitereservoir-affectedsignificantpredictorslinearmixed-effects152fixedeffectsfindingsupportedseasonalgroundwaterlevelssuggestsimportanceincludingreturnflowsespeciallyIsotopicevaluationrevealscontributions

Similar Articles

Cited By

No available data.