Mathematical modelling for pandemic preparedness in Canada: Learning from COVID-19.

Nicholas H Ogden, Emily S Acheson, Kevin Brown, David Champredon, Caroline Colijn, Alan Diener, Jonathan Dushoff, David Jd Earn, Vanessa Gabriele-Rivet, Marcellin Gangbè, Steve Guillouzic, Deirdre Hennessy, Valerie Hongoh, Amy Hurford, Lisa Kanary, Michael Li, Victoria Ng, Sarah P Otto, Irena Papst, Erin E Rees, Ashleigh Tuite, Matthew R MacLeod, Carmen Lia Murall, Lisa Waddell, Rania Wasfi, Michael Wolfson
Author Information
  1. Nicholas H Ogden: Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada.
  2. Emily S Acheson: Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada.
  3. Kevin Brown: Public Health Ontario, Toronto, ON.
  4. David Champredon: Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada.
  5. Caroline Colijn: Department of Mathematics, Simon Fraser University, Burnaby, BC.
  6. Alan Diener: Health Policy Branch, Health Canada, Ottawa, ON.
  7. Jonathan Dushoff: Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON.
  8. David Jd Earn: Department of Mathematics and Statistics and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON.
  9. Vanessa Gabriele-Rivet: Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada.
  10. Marcellin Gangbè: Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada.
  11. Steve Guillouzic: Centre for Operational Research and Analysis, Defence Research and Development Canada, Department of National Defence, Ottawa, ON.
  12. Deirdre Hennessy: Health Analysis Division, Analytical Studies and Modelling Branch, Statistics Canada, Ottawa, ON.
  13. Valerie Hongoh: Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada.
  14. Amy Hurford: Department of Biology and Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL.
  15. Lisa Kanary: Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada.
  16. Michael Li: Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada.
  17. Victoria Ng: Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada.
  18. Sarah P Otto: Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC.
  19. Irena Papst: Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada.
  20. Erin E Rees: Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada.
  21. Ashleigh Tuite: Dalla Lana School of Public Health, University of Toronto, Toronto, ON.
  22. Matthew R MacLeod: Centre for Operational Research and Analysis, Defence Research and Development Canada, Department of National Defence, Ottawa, ON.
  23. Carmen Lia Murall: Public Health Genomics Division, National Microbiology Laboratory, Public Health Agency of Canada.
  24. Lisa Waddell: Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada.
  25. Rania Wasfi: Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada.
  26. Michael Wolfson: Faculty of Medicine and Faculty of Law-Common Law, University of Ottawa, Ottawa, ON.

Abstract

Background: The COVID-19 pandemic underlined the need for pandemic planning but also brought into focus the use of mathematical modelling to support public health decisions. The types of models needed (compartment, agent-based, importation) are described. Best practices regarding biological realism (including the need for multidisciplinary expert advisors to modellers), model complexity, consideration of uncertainty and communications to decision-makers and the public are outlined.
Methods: A narrative review was developed from the experiences of COVID-19 by members of the Public Health Agency of Canada External Modelling Network for Infectious Diseases (PHAC EMN-ID), a national community of practice on mathematical modelling of infectious diseases for public health.
Results: Modelling can best support pandemic preparedness in two ways: 1) by modelling to support decisions on resource needs for likely future pandemics by estimating numbers of infections, hospitalized cases and cases needing intensive care, associated with epidemics of "hypothetical-yet-plausible" pandemic pathogens in Canada; and 2) by having ready-to-go modelling methods that can be readily adapted to the features of an emerging pandemic pathogen and used for long-range forecasting of the epidemic in Canada, as well as to explore scenarios to support public health decisions on the use of interventions.
Conclusion: There is a need for modelling expertise within public health organizations in Canada, linked to modellers in academia in a community of practice, within which relationships built outside of times of crisis can be applied to enhance modelling during public health emergencies. Key challenges to modelling for pandemic preparedness include the availability of linked public health, hospital and genomic data in Canada.

Keywords

References

  1. BMC Public Health. 2024 Apr 19;24(1):1088 [PMID: 38641571]
  2. AIMS Public Health. 2021 Mar 15;8(2):265-274 [PMID: 34017890]
  3. J R Soc Interface. 2021 Aug;18(181):20210134 [PMID: 34376091]
  4. Can Commun Dis Rep. 2021 May 07;47(4):184-194 [PMID: 34035664]
  5. Nat Commun. 2021 Jan 12;12(1):323 [PMID: 33436609]
  6. Annu Rev Public Health. 2024 May;45(1):133-150 [PMID: 37871140]
  7. Can Commun Dis Rep. 2021 Nov 10;47(11):446-460 [PMID: 34880707]
  8. Lancet Digit Health. 2021 Jan;3(1):e41-e50 [PMID: 33735068]
  9. PLoS One. 2010 May 06;5(5):e10520 [PMID: 20463898]
  10. Animal. 2021 Jun;15(6):100241 [PMID: 34091225]
  11. Int J High Perform Comput Appl. 2023 Jan;37(1):4-27 [PMID: 38603425]
  12. Curr Biol. 2021 Jul 26;31(14):R918-R929 [PMID: 34314723]
  13. Can J Public Health. 2024 Aug;115(4):535-540 [PMID: 39060712]
  14. Curr Opin Virol. 2023 Aug;61:101346 [PMID: 37515983]
  15. PLoS One. 2013 Jun 21;8(6):e67253 [PMID: 23805303]
  16. JAMA Netw Open. 2021 Aug 2;4(8):e2123139 [PMID: 34463749]
  17. Can Commun Dis Rep. 2022 Apr 06;48(4):131-139 [PMID: 35480703]
  18. R Soc Open Sci. 2022 Mar 30;9(3):220245 [PMID: 35360357]
  19. R Soc Open Sci. 2021 May 12;8(5):210233 [PMID: 34123390]
  20. Lancet Glob Health. 2020 Apr;8(4):e488-e496 [PMID: 32119825]
  21. R Soc Open Sci. 2021 Nov 2;8(11):210834 [PMID: 34737875]
  22. J Theor Biol. 2023 Mar 21;561:111378 [PMID: 36584747]
  23. J Med Virol. 2023 Jan;95(1):e28137 [PMID: 36089815]
  24. Bull Math Biol. 2023 Mar 17;85(5):32 [PMID: 36930340]
  25. PLoS Comput Biol. 2017 Sep 12;13(9):e1005697 [PMID: 28898249]
  26. Genome Med. 2021 Oct 28;13(1):169 [PMID: 34706766]
  27. Science. 2021 Feb 12;371(6530):708-712 [PMID: 33419936]
  28. Can Commun Dis Rep. 2020 Nov 05;46(1112):409-421 [PMID: 33447163]
  29. Health Res Policy Syst. 2022 Oct 8;20(1):107 [PMID: 36209122]
  30. Adv Biol Regul. 2022 Dec;86:100918 [PMID: 36210298]
  31. Proc Natl Acad Sci U S A. 2021 Jan 12;118(2): [PMID: 33361331]
  32. CMAJ. 2020 Sep 14;192(37):E1053-E1064 [PMID: 32778573]
  33. Bioinformatics. 2018 Dec 1;34(23):4121-4123 [PMID: 29790939]
  34. Epidemics. 2018 Mar;22:13-21 [PMID: 28958414]
  35. Humanit Soc Sci Commun. 2023;10(1):19 [PMID: 36687774]
  36. Can Commun Dis Rep. 2023 Jan 05;49(1):5-9 [PMID: 36815866]
  37. Epidemics. 2021 Dec;37:100520 [PMID: 34749076]
  38. Epidemics. 2022 Jun;39:100560 [PMID: 35462206]
  39. Elife. 2022 Aug 02;11: [PMID: 35916373]
  40. Can J Public Health. 2024 Aug;115(4):541-557 [PMID: 39060710]
  41. J Theor Biol. 2021 Mar 7;512:110536 [PMID: 33186594]
  42. Sci Adv. 2022 Jan 21;8(3):eabg5234 [PMID: 35044820]
  43. R Soc Open Sci. 2024 Jun 19;11(6):240186 [PMID: 39100176]
  44. Influenza Other Respir Viruses. 2011 Mar;5(2):83-8 [PMID: 21306571]
  45. PLoS Biol. 2022 Sep 23;20(9):e3001804 [PMID: 36149891]
  46. CMAJ. 2009 Nov 10;181(10):673-80 [PMID: 19825923]
  47. Exp Biol Med (Maywood). 2011 Aug;236(8):955-61 [PMID: 21727183]
  48. Philos Trans A Math Phys Eng Sci. 2022 Oct 3;380(2233):20220039 [PMID: 35965471]
  49. Stat Methods Med Res. 2018 Jul;27(7):1956-1967 [PMID: 29846150]
  50. Nature. 2021 May;593(7858):266-269 [PMID: 33767447]
  51. J Med Virol. 2023 Dec;95(12):e29256 [PMID: 38054533]
  52. PLoS Med. 2021 Oct 19;18(10):e1003793 [PMID: 34665805]
  53. PLoS Med. 2013 Oct;10(10):e1001540 [PMID: 24204214]
  54. Sci Rep. 2022 Aug 5;12(1):13490 [PMID: 35931713]
  55. CMAJ. 2009 Aug 4;181(3-4):171-3 [PMID: 19620267]
  56. Can Commun Dis Rep. 2021 Jun 09;47(56):243-250 [PMID: 34220348]

Word Cloud

Created with Highcharts 10.0.0modellingpandemicpublichealthCanadaCOVID-19supportpreparednessneedmathematicaldecisionscanusemodellersModellingcommunitypracticeinfectiousdiseasescaseswithinlinkedBackground:underlinedplanningalsobroughtfocustypesmodelsneededcompartmentagent-basedimportationdescribedBestpracticesregardingbiologicalrealismincludingmultidisciplinaryexpertadvisorsmodelcomplexityconsiderationuncertaintycommunicationsdecision-makersoutlinedMethods:narrativereviewdevelopedexperiencesmembersPublicHealthAgencyExternalNetworkInfectiousDiseasesPHACEMN-IDnationalResults:besttwoways:1resourceneedslikelyfuturepandemicsestimatingnumbersinfectionshospitalizedneedingintensivecareassociatedepidemics"hypothetical-yet-plausible"pathogens2ready-to-gomethodsreadilyadaptedfeaturesemergingpathogenusedlong-rangeforecastingepidemicwellexplorescenariosinterventionsConclusion:expertiseorganizationsacademiarelationshipsbuiltoutsidetimescrisisappliedenhanceemergenciesKeychallengesincludeavailabilityhospitalgenomicdataMathematicalCanada:Learning

Similar Articles

Cited By