Single-cell virology: On-chip, quantitative characterization of the dynamics of virus spread from one single cell to another.

Wu Liu, Claus O Wilke, Jamie J Arnold, Mohamad S Sotoudegan, Craig E Cameron
Author Information
  1. Wu Liu: Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
  2. Claus O Wilke: Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, and Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA. ORCID
  3. Jamie J Arnold: Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
  4. Mohamad S Sotoudegan: Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  5. Craig E Cameron: Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.

Abstract

Virus spread at the single-cell level is largely uncharacterized. We have designed and constructed a microfluidic device in which each nanowell contained a single, infected cell (donor) and a single, uninfected cell (recipient). Using a GFP-expressing poliovirus as our model, we observed both lytic and non-lytic spread. Donor cells supporting lytic spread established infection earlier than those supporting non-lytic spread. However, non-lytic spread established infections in recipient cells substantially faster than lytic spread and yielded higher rates of genome replication. While lytic spread was sensitive to the presence of capsid entry/uncoating inhibitors, non-lytic spread was not. Consistent with emerging models for non-lytic spread of enteroviruses using autophagy, reduction of LC3 levels in cells impaired non-lytic spread and elevated the fraction of virus in donor cells spreading lytically. The ability to distinguish lytic and non-lytic spread unambiguously will enable discovery of viral and host factors and host pathways used for non-lytic spread of enteroviruses and other viruses as well.

Keywords

References

  1. Virology. 1993 May;194(1):200-9 [PMID: 8386873]
  2. Sci Adv. 2019 Oct 30;5(10):eaax4761 [PMID: 31692968]
  3. Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):13081-6 [PMID: 25157142]
  4. Nat Rev Microbiol. 2023 Sep;21(9):573-589 [PMID: 37185947]
  5. Nat Rev Immunol. 2010 Jul;10(7):514-26 [PMID: 20577268]
  6. Virology. 1998 Feb 1;241(1):1-13 [PMID: 9454712]
  7. PLoS Pathog. 2014 Apr 10;10(4):e1004045 [PMID: 24722773]
  8. Cell. 2015 Feb 12;160(4):619-630 [PMID: 25679758]
  9. Antimicrob Agents Chemother. 2009 Oct;53(10):4501-3 [PMID: 19635956]
  10. Cell Host Microbe. 2018 Apr 11;23(4):435-446 [PMID: 29649440]
  11. PeerJ. 2018 Jan 16;6:e4251 [PMID: 29362694]
  12. Virology. 2015 May;479-480:450-6 [PMID: 25858140]
  13. Viruses. 2018 Mar 20;10(3): [PMID: 29558400]
  14. Viruses. 2020 Jun 08;12(6): [PMID: 32521696]
  15. Annu Rev Virol. 2021 Sep 29;8(1):183-199 [PMID: 34242062]
  16. Annu Rev Virol. 2018 Sep 29;5(1):69-92 [PMID: 30048219]
  17. Autophagy. 2015;11(2):430-1 [PMID: 25680079]
  18. Nature. 2013 Apr 18;496(7445):367-71 [PMID: 23542590]
  19. Nat Rev Endocrinol. 2022 Aug;18(8):503-516 [PMID: 35650334]
  20. Virology. 2015 May;479-480:444-9 [PMID: 25890822]
  21. J Cell Biol. 2020 Jun 1;219(6): [PMID: 32357219]
  22. Intervirology. 1993;35(1-4):140-51 [PMID: 8407241]
  23. Cell Rep. 2018 Mar 20;22(12):3304-3314 [PMID: 29562185]
  24. Autophagy. 2018;14(7):1201-1213 [PMID: 29929428]
  25. Cold Spring Harb Symp Quant Biol. 1953;18:273-9 [PMID: 13168995]
  26. Adv Virus Res. 1961;8:319-78 [PMID: 13881155]
  27. Nat Methods. 2018 Jan;15(1):47-51 [PMID: 29320486]
  28. Nat Rev Microbiol. 2024 May;22(5):309-321 [PMID: 38102460]
  29. Cell Rep. 2017 Nov 7;21(6):1692-1704 [PMID: 29117571]
  30. Nat Chem Biol. 2014 Dec;10(12):1013-9 [PMID: 25326666]

Grants

  1. R01 AI120560/NIAID NIH HHS
  2. R01 AI169462/NIAID NIH HHS

Word Cloud

Created with Highcharts 10.0.0spreadnon-lyticlyticsinglecellcellsenterovirusesviraldynamicsdonorrecipientsupportingestablishedinfectionautophagyvirushostVirussingle-celllevellargelyuncharacterizeddesignedconstructedmicrofluidicdevicenanowellcontainedinfecteduninfectedUsingGFP-expressingpoliovirusmodelobservedDonorearlierHoweverinfectionssubstantiallyfasteryieldedhigherratesgenomereplicationsensitivepresencecapsidentry/uncoatinginhibitorsConsistentemergingmodelsusingreductionLC3levelsimpairedelevatedfractionspreadinglyticallyabilitydistinguishunambiguouslywillenablediscoveryfactorspathwaysusedviruseswellSingle-cellvirology:On-chipquantitativecharacterizationoneanothersecretoryvirology

Similar Articles

Cited By