Computational Support to Explore Ternary Solid Dispersions of Challenging Drugs Using Coformer and Hydroxypropyl Cellulose.

Andreas Niederquell, Susanne Herzig, Monica Schönenberger, Edmont Stoyanov, Martin Kuentz
Author Information
  1. Andreas Niederquell: Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences FHNW, Hofackerstr. 30, 4132 Muttenz, Switzerland.
  2. Susanne Herzig: Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences FHNW, Hofackerstr. 30, 4132 Muttenz, Switzerland.
  3. Monica Schönenberger: Nano Imaging Lab, Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
  4. Edmont Stoyanov: Nisso Chemical Europe, Berliner Allee 42, 40212 Düsseldorf, Germany.
  5. Martin Kuentz: Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences FHNW, Hofackerstr. 30, 4132 Muttenz, Switzerland. ORCID

Abstract

A majority of drugs marketed in amorphous formulations have a good glass-forming ability, while compounds less stable in the amorphous state still pose a formulation challenge. This work explores ternary solid dispersions of two model drugs with a polymer (i.e., hydroxypropyl cellulose) and a coformer as stabilizing excipients. The aim was to introduce a computational approach by preselecting additives using solubility parameter intervals (i.e., overlap range of solubility parameter, ORSP) followed by more advanced COSMO-RS theory modeling. Thus, a mapping of calculated mixing enthalpy and melting points is proposed for evaluation prior to hot melt extrusion. Following experimental testing of process feasibility, the selected formulations were tested for their physical stability using conventional bulk analytics and by confocal laser scanning and atomic force microscopy imaging. In line with the screening, dl-malic and l-tartaric acid (20%, w/w) in HPC formulations showed no signs of early drug crystallization after 3 months. However, l-tartaric acid formulations displayed few crystals on the surface, which was likely a humidity-induced surface phenomenon. Although more research is needed, the conclusion is that the proposed computational small-scale extrusion approach of ternary solid dispersion has great potential in the formulation development of challenging drugs.

Keywords

References

  1. Pharmaceutics. 2019 Aug 21;11(9): [PMID: 31438566]
  2. Int J Pharm. 2020 Apr 30;580:119240 [PMID: 32197983]
  3. Mol Pharm. 2019 May 6;16(5):2142-2152 [PMID: 30946778]
  4. Int J Pharm. 2018 Jul 30;546(1-2):137-144 [PMID: 29772285]
  5. Pharmaceutics. 2021 Oct 18;13(10): [PMID: 34684018]
  6. Eur J Pharm Sci. 2021 Feb 1;157:105636 [PMID: 33160046]
  7. Int J Pharm. 2024 Oct 25;664:124613 [PMID: 39179010]
  8. J Pharm Sci. 2021 May;110(5):1921-1930 [PMID: 33609523]
  9. J Pharm Sci. 2009 Dec;98(12):4711-23 [PMID: 19462469]
  10. Mol Pharm. 2018 Feb 5;15(2):669-678 [PMID: 29309155]
  11. Eur J Pharm Sci. 2016 May 25;87:136-63 [PMID: 26687443]
  12. Molecules. 2021 Jan 01;26(1): [PMID: 33401494]
  13. Int J Pharm. 2001 Sep 11;226(1-2):147-61 [PMID: 11532578]
  14. Eur J Pharm Sci. 2021 Mar 1;158:105655 [PMID: 33253883]
  15. Int J Pharm. 2022 Aug 25;624:121951 [PMID: 35753536]
  16. Mol Pharm. 2014 Sep 2;11(9):3123-32 [PMID: 25014125]
  17. Cryst Growth Des. 2022 Dec 23;23(2):842-852 [PMID: 36747574]
  18. J Pharm Sci. 2019 Aug;108(8):2561-2569 [PMID: 30878513]
  19. J Pharm Sci. 2016 Sep;105(9):2527-2544 [PMID: 26886314]
  20. J Pharm Sci. 2022 Jun;111(6):1728-1738 [PMID: 34863971]
  21. Eur J Pharm Biopharm. 2017 Mar;112:204-208 [PMID: 27903457]
  22. J Pharm Pharmacol. 2015 Jun;67(6):803-11 [PMID: 25851032]
  23. J Pharm Pharmacol. 2019 Apr;71(4):483-509 [PMID: 29770440]
  24. Mol Pharm. 2022 Feb 7;19(2):690-703 [PMID: 35005970]
  25. J Pharm Sci. 2010 Sep;99(9):3787-806 [PMID: 20623696]
  26. Int J Pharm. 2022 Apr 5;617:121625 [PMID: 35259442]
  27. Pharm Res. 2011 Oct;28(10):2567-74 [PMID: 21607777]
  28. Eur J Pharm Sci. 2013 Sep 27;50(1):8-16 [PMID: 23583787]
  29. Pharm Res. 2018 Apr 23;35(6):125 [PMID: 29687226]
  30. Int J Pharm. 2017 Apr 15;521(1-2):232-238 [PMID: 28232267]
  31. Eur J Pharm Biopharm. 2018 Dec;133:122-130 [PMID: 30300718]
  32. Mol Pharm. 2019 Apr 1;16(4):1751-1765 [PMID: 30811205]
  33. J Pharm Sci. 2010 Dec;99(12):4940-54 [PMID: 20821390]
  34. Eur J Pharm Biopharm. 2013 Nov;85(3 Pt B):799-813 [PMID: 24056053]
  35. Pharmaceutics. 2018 Jul 19;10(3): [PMID: 30029516]
  36. Int J Pharm X. 2021 Mar 17;3:100076 [PMID: 33851133]
  37. J Pharm Pharmacol. 2019 Apr;71(4):441-463 [PMID: 29978475]
  38. J Pharm Sci. 1999 Nov;88(11):1182-90 [PMID: 10564068]
  39. Int J Pharm. 2013 Aug 30;453(1):3-11 [PMID: 23124107]
  40. Mol Pharm. 2015 Feb 2;12(2):590-9 [PMID: 25569586]
  41. J Pharm Sci. 2009 Sep;98(9):2935-53 [PMID: 19499564]
  42. Eur J Pharm Sci. 2019 Sep 1;137:104967 [PMID: 31252052]
  43. Int J Pharm. 2020 Feb 25;576:118989 [PMID: 31931076]
  44. J Pharm Pharmacol. 2019 Apr;71(4):464-482 [PMID: 30070363]
  45. Int J Pharm. 2015 Nov 10;495(1):312-317 [PMID: 26341321]
  46. Adv Drug Deliv Rev. 2016 May 1;100:116-25 [PMID: 26805787]
  47. J Pharm Sci. 2014 Nov;103(11):3511-3523 [PMID: 25196860]
  48. Carbohydr Polym. 2014 Nov 4;112:512-9 [PMID: 25129775]
  49. J Pharm Sci. 2017 Jan;106(1):5-27 [PMID: 27372552]
  50. Mol Pharm. 2016 Jan 4;13(1):241-50 [PMID: 26587865]
  51. J Pharm Sci. 2012 Sep;101(9):3239-48 [PMID: 22531946]
  52. Int J Pharm. 2011 Oct 31;419(1-2):20-7 [PMID: 21801822]
  53. Int J Pharm. 2007 Aug 16;341(1-2):162-72 [PMID: 17524578]
  54. Ther Deliv. 2015 Mar;6(3):339-52 [PMID: 25853309]
  55. Pharmaceutics. 2019 Nov 24;11(12): [PMID: 31771255]
  56. Mol Pharm. 2021 Mar 1;18(3):1344-1355 [PMID: 33595322]
  57. Drug Dev Ind Pharm. 2021 Jul;47(7):1011-1028 [PMID: 33818224]

MeSH Term

Cellulose
Solubility
Excipients
Drug Compounding
Chemistry, Pharmaceutical
Crystallization
Drug Stability
Polymers
Computer Simulation
Hot Melt Extrusion Technology
Microscopy, Atomic Force

Chemicals

hydroxypropylcellulose
Cellulose
Excipients
Polymers

Word Cloud

Created with Highcharts 10.0.0formulationsdrugssolidextrusionamorphousformulationternaryiehydroxypropylcellulosecoformercomputationalapproachusingsolubilityparameterproposedhotmeltl-tartaricacidsurfacedispersionmajoritymarketedgoodglass-formingabilitycompoundslessstablestatestillposechallengeworkexploresdispersionstwomodelpolymerstabilizingexcipientsaimintroducepreselectingadditivesintervalsoverlaprangeORSPfollowedadvancedCOSMO-RStheorymodelingThusmappingcalculatedmixingenthalpymeltingpointsevaluationpriorFollowingexperimentaltestingprocessfeasibilityselectedtestedphysicalstabilityconventionalbulkanalyticsconfocallaserscanningatomicforcemicroscopyimaginglinescreeningdl-malic20%w/wHPCshowedsignsearlydrugcrystallization3monthsHoweverdisplayedcrystalslikelyhumidity-inducedphenomenonAlthoughresearchneededconclusionsmall-scalegreatpotentialdevelopmentchallengingComputationalSupportExploreTernarySolidDispersionsChallengingDrugsUsingCoformerHydroxypropylCellulosemolecularinteractions

Similar Articles

Cited By