Transcriptional repression by HDAC3 mediates T cell exclusion from mutant lung tumors.

Caroline K McGuire, Ambryn S Meehan, Evan Couser, Lois Bull, Allegra C Minor, Alexandra Kuhlmann-Hogan, Susan M Kaech, Reuben J Shaw, Lillian J Eichner
Author Information
  1. Caroline K McGuire: Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611.
  2. Ambryn S Meehan: Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611.
  3. Evan Couser: Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611.
  4. Lois Bull: Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611.
  5. Allegra C Minor: Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611.
  6. Alexandra Kuhlmann-Hogan: NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037.
  7. Susan M Kaech: NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037. ORCID
  8. Reuben J Shaw: Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla CA 92037. ORCID
  9. Lillian J Eichner: Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611. ORCID

Abstract

Histone Deacetylase 3 (HDAC3) function in vivo is nuanced and directed in a tissue-specific fashion. The importance of HDAC3 in mutant lung tumors has recently been identified, but HDAC3 function in this context remains to be fully elucidated. Here, we identified HDAC3 as a lung tumor cell-intrinsic transcriptional regulator of the tumor immune microenvironment. In mutant lung cancer cells, we found that HDAC3 is a direct transcriptional repressor of a cassette of secreted chemokines, including . Genetic and pharmacological inhibition of HDAC3 robustly up-regulated this gene set in human and mouse , (KL) and , (KP) mutant lung cancer cells through an NF-��B/p65-dependent mechanism. Using genetically engineered mouse models, we found that HDAC3 inactivation in vivo induced expression of this gene set selectively in lung tumors and resulted in enhanced T cell recruitment at least in part via . Furthermore, we found that inhibition of HDAC3 in the presence of Kras pathway inhibitors dissociated expression from that of immunosuppressive chemokines and that combination treatment of entinostat with trametinib enhanced T cell recruitment into lung tumors in vivo. Finally, we showed that T cells contribute to in vivo tumor growth control in the presence of entinostat and trametinib combination treatment. Together, our findings reveal that HDAC3 is a druggable endogenous repressor of T cell recruitment into mutant lung tumors.

Keywords

References

  1. Clin Cancer Res. 2017 Sep 1;23(17):5187-5201 [PMID: 28698201]
  2. Science. 2001 Aug 31;293(5535):1653-7 [PMID: 11533489]
  3. Cancer Cell. 2019 Jun 10;35(6):885-900.e10 [PMID: 31185212]
  4. Cancer Discov. 2019 Nov;9(11):1606-1627 [PMID: 31350328]
  5. Mol Endocrinol. 2005 Jun;19(6):1452-9 [PMID: 15761026]
  6. Gastroenterology. 2010 Apr;138(4):1429-40 [PMID: 19909745]
  7. Nat Genet. 2022 May;54(5):670-683 [PMID: 35468964]
  8. Cancer Discov. 2020 Mar;10(3):440-459 [PMID: 31915197]
  9. Cancer Discov. 2018 Jul;8(7):822-835 [PMID: 29773717]
  10. Front Endocrinol (Lausanne). 2022 Sep 12;13:972312 [PMID: 36171897]
  11. JCI Insight. 2020 May 21;5(10): [PMID: 32324594]
  12. Nat Rev Cancer. 2019 Aug;19(8):439-453 [PMID: 31235879]
  13. J Clin Oncol. 2005 Jun 10;23(17):3912-22 [PMID: 15851766]
  14. Nature. 2017 Jun 22;546(7659):544-548 [PMID: 28614293]
  15. Science. 2018 Dec 21;362(6421):1416-1422 [PMID: 30573629]
  16. Cell. 2020 Jul 23;182(2):297-316.e27 [PMID: 32619424]
  17. Ann Am Thorac Soc. 2016 Dec;13 Suppl 5:S402-S406 [PMID: 28005423]
  18. Cancer Res. 2009 Apr 1;69(7):3077-85 [PMID: 19293190]
  19. Nat Cancer. 2022 Jun;3(6):734-752 [PMID: 35618935]
  20. Biochim Biophys Acta Rev Cancer. 2019 Apr;1871(2):289-312 [PMID: 30703432]
  21. JCI Insight. 2022 Oct 10;7(19): [PMID: 36214223]
  22. Science. 2011 Mar 11;331(6022):1315-9 [PMID: 21393543]
  23. Mol Cell Biol. 2003 Aug;23(15):5122-31 [PMID: 12861000]
  24. Immunity. 2021 May 11;54(5):859-874 [PMID: 33838745]
  25. Genes Dev. 2019 Feb 1;33(3-4):127-143 [PMID: 30709901]
  26. Nat Genet. 2016 Jun;48(6):607-16 [PMID: 27158780]
  27. Cancer Cell. 2020 Jun 8;37(6):834-849.e13 [PMID: 32442403]
  28. Cancer Res. 2009 Aug 1;69(15):6331-8 [PMID: 19602595]
  29. Mol Cell. 2013 Dec 26;52(6):769-82 [PMID: 24268577]
  30. Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2317694121 [PMID: 39388266]
  31. J Thorac Dis. 2017 Apr;9(Suppl 3):S164-S171 [PMID: 28446981]
  32. Immunity. 2018 Oct 16;49(4):764-779.e9 [PMID: 30332632]
  33. Genes Dev. 2011 Oct 15;25(20):2125-36 [PMID: 21979375]
  34. J Clin Invest. 2021 Aug 16;131(16): [PMID: 34396985]
  35. Cancer Discov. 2022 Jan;12(1):47-61 [PMID: 34353854]
  36. Cancer Cell. 2010 Nov 16;18(5):436-47 [PMID: 21075309]
  37. EMBO J. 2008 Apr 9;27(7):1017-28 [PMID: 18354499]
  38. Immunity. 2019 Jun 18;50(6):1498-1512.e5 [PMID: 31097342]
  39. Cancer Discov. 2017 Jan;7(1):38-53 [PMID: 27733359]
  40. Nat Rev Mol Cell Biol. 2019 Feb;20(2):102-115 [PMID: 30390028]
  41. Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):15090-15095 [PMID: 27956629]
  42. Int J Mol Sci. 2022 Dec 08;23(24): [PMID: 36555180]
  43. Mol Cell. 2010 May 28;38(4):576-89 [PMID: 20513432]
  44. J Immunol. 2006 Feb 1;176(3):1456-64 [PMID: 16424173]
  45. Cancer Discov. 2013 Aug;3(8):870-9 [PMID: 23715154]
  46. Sci Adv. 2023 Mar 15;9(11):eadd3243 [PMID: 36930718]
  47. Nat Commun. 2021 Aug 26;12(1):5151 [PMID: 34446712]
  48. Nat Med. 2022 Oct;28(10):2171-2182 [PMID: 36216931]
  49. Cancer Discov. 2015 Aug;5(8):860-77 [PMID: 26069186]
  50. Nat Rev Immunol. 2017 Sep;17(9):559-572 [PMID: 28555670]
  51. J Clin Oncol. 2013 Jun 10;31(17):2128-35 [PMID: 23650416]
  52. PLoS One. 2014 Aug 19;9(8):e102684 [PMID: 25136952]
  53. Cancer Discov. 2019 Apr;9(4):526-545 [PMID: 30709805]
  54. Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2647-52 [PMID: 23297220]
  55. Genes Dev. 2005 Sep 15;19(18):2138-51 [PMID: 16166378]
  56. J Clin Invest. 2022 Oct 3;132(19): [PMID: 35972798]
  57. Genes Dev. 2010 Nov 15;24(22):2463-79 [PMID: 21078816]
  58. Nat Commun. 2021 Mar 5;12(1):1482 [PMID: 33674596]
  59. Cancer Immunol Res. 2023 May 3;11(5):657-673 [PMID: 36898011]
  60. Cell Rep Med. 2021 Jan 19;2(1):100186 [PMID: 33521700]

Grants

  1. P01 CA120964/NCI NIH HHS
  2. P30 CA060553/NCI NIH HHS
  3. R35 CA220538/NCI NIH HHS
  4. P30 CA023100/NCI NIH HHS
  5. K22 CA251636/NCI NIH HHS
  6. P30 CA014195/NCI NIH HHS

MeSH Term

Lung Neoplasms
Animals
Histone Deacetylases
Humans
Mice
Proto-Oncogene Proteins p21(ras)
Cell Line, Tumor
Chemokine CXCL10
T-Lymphocytes
Mutation
Gene Expression Regulation, Neoplastic
Pyrimidinones
Pyridones
Tumor Microenvironment
Transcription, Genetic
Histone Deacetylase Inhibitors
Pyridines
Benzamides

Chemicals

Histone Deacetylases
Proto-Oncogene Proteins p21(ras)
histone deacetylase 3
Chemokine CXCL10
KRAS protein, human
Pyrimidinones
Pyridones
trametinib
CXCL10 protein, human
Histone Deacetylase Inhibitors
entinostat
Pyridines
Benzamides

Word Cloud

Similar Articles

Cited By