QSPRmodeler - An open source application for molecular predictive analytics.

Rafa�� A Bachorz, Damian Nowak, Marcin Ratajewski
Author Information
  1. Rafa�� A Bachorz: Institute of Medical Biology, Polish Academy of Sciences, ����d��, Poland.
  2. Damian Nowak: Institute of Medical Biology, Polish Academy of Sciences, ����d��, Poland.
  3. Marcin Ratajewski: Institute of Medical Biology, Polish Academy of Sciences, ����d��, Poland.

Abstract

The drug design process can be successfully supported using a variety of methods. Some of these are oriented toward molecular property prediction, which is a key step in the early drug discovery stage. Before experimental validation, drug candidates are usually compared with known experimental data. Technically, this can be achieved using machine learning approaches, in which selected experimental data are used to train the predictive models. The proposed Python software is designed for this purpose. It supports the entire workflow of molecular data processing, starting from raw data preparation followed by molecular descriptor creation and machine learning model training. The predictive capabilities of the resulting models were carefully validated internally and externally. These models can be easily applied to new compounds, including within more complex workflows involving generative approaches.

Keywords

References

  1. Biochim Biophys Acta Mol Basis Dis. 2021 Jun 1;1867(6):166101 [PMID: 33600998]
  2. Chem Res Toxicol. 2008 Feb;21(2):521-41 [PMID: 18189364]
  3. IEEE J Biomed Health Inform. 2024 Apr;28(4):2362-2372 [PMID: 38265898]
  4. J Med Chem. 1964 Jul;7:395-9 [PMID: 14221113]
  5. Toxicol Lett. 2011 Aug 28;205(2):146-53 [PMID: 21641981]
  6. Nat Chem Biol. 2011 Jun;7(6):327-30 [PMID: 21587249]
  7. Curr Top Med Chem. 2006;6(15):1569-78 [PMID: 16918469]
  8. Clin Pharmacokinet. 2000 Jun;38(6):493-504 [PMID: 10885586]
  9. Mol Divers. 2016 May;20(2):439-51 [PMID: 26689205]
  10. Clin Case Rep. 2023 Mar 14;11(3):e7056 [PMID: 36937641]
  11. J Carcinog. 2011;10:20 [PMID: 21886458]
  12. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3369-74 [PMID: 11248085]
  13. Drug Metab Rev. 1984;15(3):425-504 [PMID: 6386409]
  14. Toxicol Lett. 1995 Sep;79(1-3):45-53 [PMID: 7570673]
  15. J Chem Inf Comput Sci. 2002 Nov-Dec;42(6):1273-80 [PMID: 12444722]
  16. Cancers (Basel). 2020 Jul 08;12(7): [PMID: 32650419]
  17. Mutagenesis. 2004 Sep;19(5):365-77 [PMID: 15388809]
  18. J Clin Invest. 1998 Sep 1;102(5):1016-23 [PMID: 9727070]
  19. Endocr Rev. 2007 Dec;28(7):778-808 [PMID: 17940184]
  20. J Biol Chem. 2000 May 19;275(20):15122-7 [PMID: 10748001]
  21. Crit Rev Toxicol. 1989;19(3):185-226 [PMID: 2653732]
  22. Endocr Connect. 2017 Nov;6(8):R146-R161 [PMID: 29030409]
  23. Chemosphere. 2021 Jan;262:128313 [PMID: 33182081]
  24. J Chem Inf Model. 2013 Feb 25;53(2):475-92 [PMID: 23252936]
  25. Toxicol Appl Pharmacol. 2004 Sep 15;199(3):266-74 [PMID: 15364542]
  26. Comput Struct Biotechnol J. 2023 Oct 29;21:5491-5505 [PMID: 38022699]
  27. Pharmacol Rev. 2013 Mar 01;65(2):710-78 [PMID: 23457206]
  28. Nucleic Acids Res. 2012 Jan;40(Database issue):D1100-7 [PMID: 21948594]
  29. J Cheminform. 2018 Feb 06;10(1):4 [PMID: 29411163]
  30. J Chem Inf Model. 2010 May 24;50(5):742-54 [PMID: 20426451]
  31. Cancer Lett. 2006 Jan 8;231(1):12-9 [PMID: 16356826]
  32. J Med Chem. 2016 Aug 11;59(15):7075-88 [PMID: 27396732]
  33. Molecules. 2012 Aug 03;17(8):9283-305 [PMID: 22864238]
  34. Future Med Chem. 2016 Oct;8(15):1825-1839 [PMID: 27643715]
  35. Toxicol Lett. 2015 Jan 5;232(1):193-202 [PMID: 25455453]

Word Cloud

Created with Highcharts 10.0.0drugmoleculardatacanexperimentalmachinelearningpredictivemodelsdesignusingapproachesprocesssuccessfullysupportedvarietymethodsorientedtowardpropertypredictionkeystepearlydiscoverystagevalidationcandidatesusuallycomparedknownTechnicallyachievedselectedusedtrainproposedPythonsoftwaredesignedpurposesupportsentireworkflowprocessingstartingrawpreparationfolloweddescriptorcreationmodeltrainingcapabilitiesresultingcarefullyvalidatedinternallyexternallyeasilyappliednewcompoundsincludingwithincomplexworkflowsinvolvinggenerativeQSPRmodeler-opensourceapplicationanalyticsADMETQSPRbiologicalactivity

Similar Articles

Cited By

No available data.