DrugDAGT: a dual-attention graph transformer with contrastive learning improves drug-drug interaction prediction.

Yaojia Chen, Jiacheng Wang, Quan Zou, Mengting Niu, Yijie Ding, Jiangning Song, Yansu Wang
Author Information
  1. Yaojia Chen: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
  2. Jiacheng Wang: Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.
  3. Quan Zou: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
  4. Mengting Niu: School of Electronic and Communication Engineering, Shenzhen Polytechnic University, Shenzhen, China.
  5. Yijie Ding: Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.
  6. Jiangning Song: Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia. Jiangning.Song@monash.edu.
  7. Yansu Wang: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China. wangyansu@uestc.edu.cn.

Abstract

BACKGROUND: Drug-drug interactions (DDIs) can result in unexpected pharmacological outcomes, including adverse drug events, which are crucial for drug discovery. Graph neural networks have substantially advanced our ability to model molecular representations; however, the precise identification of key local structures and the capture of long-distance structural correlations for better DDI prediction and interpretation remain significant challenges.
RESULTS: Here, we present DrugDAGT, a dual-attention graph transformer framework with contrastive learning for predicting multiple DDI types. The dual-attention graph transformer incorporates attention mechanisms at both the bond and atomic levels, thereby enabling the integration of short and long-range dependencies within drug molecules to pinpoint key local structures essential for DDI discovery. Moreover, DrugDAGT further implements graph contrastive learning to maximize the similarity of representations across different views for better discrimination of molecular structures. Experiments in both warm-start and cold-start scenarios demonstrate that DrugDAGT outperforms state-of-the-art baseline models, achieving superior overall performance. Furthermore, visualization of the learned representations of drug pairs and the attention map provides interpretable insights instead of black-box results.
CONCLUSIONS: DrugDAGT provides an effective tool for accurately predicting multiple DDI types by identifying key local chemical structures, offering valuable insights for prescribing medications, and guiding drug development. All data and code of our DrugDAGT can be found at https://github.com/codejiajia/DrugDAGT .

Keywords

References

  1. Phys Rev Lett. 2012 Feb 3;108(5):058301 [PMID: 22400967]
  2. Brief Bioinform. 2022 Sep 20;23(5): [PMID: 35849817]
  3. PLoS Comput Biol. 2023 Jan 26;19(1):e1010812 [PMID: 36701288]
  4. Bioinformatics. 2021 Sep 29;37(18):2988-2995 [PMID: 33769494]
  5. Pharmaceuticals (Basel). 2010 Jul 07;3(7):2146-2162 [PMID: 27713346]
  6. J Chem Inf Model. 2019 Aug 26;59(8):3370-3388 [PMID: 31361484]
  7. J Cheminform. 2023 Feb 26;15(1):29 [PMID: 36843022]
  8. Molecules. 2017 Aug 24;22(9): [PMID: 28837116]
  9. Sci Rep. 2015 Jul 21;5:12339 [PMID: 26196247]
  10. Int J Antimicrob Agents. 2024 May;63(5):107122 [PMID: 38431108]
  11. KDD. 2016 Aug;2016:855-864 [PMID: 27853626]
  12. Lancet. 2000 Oct 7;356(9237):1255-9 [PMID: 11072960]
  13. Nat Biotechnol. 2017 May;35(5):463-474 [PMID: 28319085]
  14. Adv Sci (Weinh). 2024 Feb;11(7):e2306329 [PMID: 38072669]
  15. Pharmacotherapy. 1984 Nov-Dec;4(6):343-73 [PMID: 6151171]
  16. Brief Bioinform. 2021 Jul 20;22(4): [PMID: 33152766]
  17. Int J Mol Sci. 2021 Nov 21;22(22): [PMID: 34830432]
  18. Clin Pharmacokinet. 2022 Dec;61(12):1749-1759 [PMID: 36369328]
  19. J Cheminform. 2020 Sep 17;12(1):56 [PMID: 33431035]
  20. PLoS One. 2013 Apr 19;8(4):e61468 [PMID: 23620757]
  21. IEEE J Biomed Health Inform. 2024 Jan;28(1):569-579 [PMID: 37991904]
  22. Nucleic Acids Res. 2014 Jan;42(Database issue):D1091-7 [PMID: 24203711]
  23. Bioinformatics. 2022 Dec 13;38(24):5406-5412 [PMID: 36271850]
  24. Nature. 2020 Sep;585(7825):357-362 [PMID: 32939066]
  25. Chem Sci. 2022 Jul 13;13(29):8693-8703 [PMID: 35974769]
  26. BMC Pharmacol Toxicol. 2022 Jun 18;23(1):41 [PMID: 35717393]
  27. J Cheminform. 2019 Apr 8;11(1):28 [PMID: 30963300]
  28. Sci Transl Med. 2013 Oct 2;5(205):205rv1 [PMID: 24089409]
  29. Nucleic Acids Res. 2019 Nov 18;47(20):e127 [PMID: 31504851]
  30. Brief Bioinform. 2023 Jan 19;24(1): [PMID: 36592061]
  31. PLoS One. 2015 Oct 15;10(10):e0140816 [PMID: 26469276]
  32. J Cheminform. 2013 Sep 24;5(1):43 [PMID: 24063533]
  33. J Chem Inf Model. 2024 Apr 8;64(7):2174-2194 [PMID: 37934070]
  34. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34695842]
  35. Brief Bioinform. 2023 Jul 20;24(4): [PMID: 37401373]
  36. Nucleic Acids Res. 2021 Dec 16;49(22):e129 [PMID: 34581805]
  37. Drug Discov Today. 2005 Nov 1;10(21):1421-33 [PMID: 16243262]

MeSH Term

Drug Interactions
Machine Learning
Neural Networks, Computer
Drug Discovery

Word Cloud

Created with Highcharts 10.0.0drugDrugDAGTstructuresDDIgraphtransformerrepresentationskeylocaldual-attentioncontrastivelearningDrug-druginteractionscandiscoveryGraphmolecularbetterpredictionpredictingmultipletypesattentionprovidesinsightsBACKGROUND:DDIsresultunexpectedpharmacologicaloutcomesincludingadverseeventscrucialneuralnetworkssubstantiallyadvancedabilitymodelhoweverpreciseidentificationcapturelong-distancestructuralcorrelationsinterpretationremainsignificantchallengesRESULTS:presentframeworkincorporatesmechanismsbondatomiclevelstherebyenablingintegrationshortlong-rangedependencieswithinmoleculespinpointessentialMoreoverimplementsmaximizesimilarityacrossdifferentviewsdiscriminationExperimentswarm-startcold-startscenariosdemonstrateoutperformsstate-of-the-artbaselinemodelsachievingsuperioroverallperformanceFurthermorevisualizationlearnedpairsmapinterpretableinsteadblack-boxresultsCONCLUSIONS:effectivetoolaccuratelyidentifyingchemicalofferingvaluableprescribingmedicationsguidingdevelopmentdatacodefoundhttps://githubcom/codejiajia/DrugDAGTDrugDAGT:improvesdrug-druginteractionAttentionInterpretation

Similar Articles

Cited By