A multiantigenic antibacterial nanovaccine utilizing hybrid membrane vesicles for combating Pseudomonas aeruginosa infections.

Xinran Peng, Yuanjing Luo, Li Yang, Yi Yan Yang, Peiyan Yuan, Xinhai Chen, Guo-Bao Tian, Xin Ding
Author Information
  1. Xinran Peng: School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China.
  2. Yuanjing Luo: School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China.
  3. Li Yang: School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China.
  4. Yi Yan Yang: Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
  5. Peiyan Yuan: School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, PR China.
  6. Xinhai Chen: Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China.
  7. Guo-Bao Tian: Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
  8. Xin Ding: School of Medicine, Sun Yat-Sen University, Shenzhen, China. ORCID

Abstract

bacterial infections, especially those caused by multidrug-resistant pathogens, pose a significant threat to public health. Vaccines are a crucial tool in fighting these infections; however, no clinically available vaccine exists for the most common bacterial infections, such as those caused by Pseudomonas aeruginosa. Herein, a multiantigenic antibacterial nanovaccine (AuNP@HMV@SPs) is reported to combat P. aeruginosa infections. This nanovaccine utilizes the hybrid membrane vesicles (HMVs) created by fusing macrophage membrane vesicles (MMVs) with bacterial outer membrane vesicles (OMVs). The HMVs mitigate the toxic effects of both OMVs and bacterial secreted toxins (SP) adsorbed on the surface of MMVs, while preserving their stimulating properties. Gold nanoparticles (AuNPs) are utilized as adjuvant to enhance immune response without comprising safety. The nanovaccine AuNP@HMV@SPs induces robust humoral and cellular immune responses, leading to destruction of bacterial cells and neutralization of their secreted toxins. In murine models of septicemia and pneumonia caused by P. aeruginosa, AuNP@HMV@SPs exhibits superior prophylactic efficacy compared to control groups including OMVs, or MMVs@SPs and HMV@SPs, achieving 100% survival in septicemia and > 99.9% reduction in lung bacterial load in pneumonia. This study highlights AuNP@HMV@SPs as a safe and effective antibacterial nanovaccine, targeting both bacteria and their secreted toxins, and offers a promising platform for developing multiantigenic antibacterial vaccines against multidrug-resistant pathogens.

Keywords

References

  1. Nanomaterials (Basel). 2021 Jun 24;11(7): [PMID: 34202555]
  2. Nanomedicine. 2021 Jul;35:102398 [PMID: 33901646]
  3. Nat Commun. 2023 Jan 28;14(1):464 [PMID: 36709333]
  4. Biomater Res. 2023 Apr 15;27(1):30 [PMID: 37061741]
  5. J Extracell Vesicles. 2021 Jul;10(9):e12120 [PMID: 34262675]
  6. Clin Microbiol Rev. 2020 May 13;33(3): [PMID: 32404435]
  7. Nat Med. 2018 Jan 9;24(1):10-19 [PMID: 29315295]
  8. Lancet Infect Dis. 2018 Mar;18(3):318-327 [PMID: 29276051]
  9. Am J Respir Crit Care Med. 2005 Jun 1;171(11):1209-23 [PMID: 15695491]
  10. J Extracell Vesicles. 2024 Oct;13(10):e12524 [PMID: 39400457]
  11. Biomaterials. 2019 Jan;189:60-68 [PMID: 30388590]
  12. Nano Lett. 2015 Feb 11;15(2):1403-9 [PMID: 25615236]
  13. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 Jul;14(4):e1784 [PMID: 35194964]
  14. J Biol Chem. 2003 Jul 11;278(28):25273-6 [PMID: 12759358]
  15. Nano Lett. 2019 Jul 10;19(7):4760-4769 [PMID: 31184899]
  16. Pathogens. 2021 Oct 12;10(10): [PMID: 34684258]
  17. Drug Discov Today. 2024 Jun;29(6):103991 [PMID: 38663578]
  18. Nano Lett. 2015 Jan 14;15(1):266-74 [PMID: 25506626]
  19. Hum Vaccin Immunother. 2015;11(1):14-20 [PMID: 25483510]
  20. Hum Vaccin Immunother. 2020;16(2):412-418 [PMID: 31368828]
  21. Vaccine. 2018 Feb 14;36(8):1047-1054 [PMID: 29406241]
  22. ACS Nano. 2022 Nov 28;: [PMID: 36441916]
  23. Surg Infect (Larchmt). 2018 Nov/Dec;19(8):757-768 [PMID: 30388058]
  24. Semin Immunol. 2020 Aug;50:101433 [PMID: 33309166]
  25. Front Cell Infect Microbiol. 2017 Feb 15;7:39 [PMID: 28261568]

Grants

  1. 52072418/National Natural Science Foundation of China
  2. 52373165/National Natural Science Foundation of China
  3. JCYJ20200109142401698/Shenzhen Science and Technology Program
  4. JCYJ20210324124214038/Shenzhen Science and Technology Program
  5. 2022A1515010977/Natural Science Foundation of Guangdong Province

MeSH Term

Animals
Pseudomonas Infections
Pseudomonas aeruginosa
Mice
Gold
Metal Nanoparticles
Anti-Bacterial Agents
Extracellular Vesicles
Bacterial Vaccines
Female
Bacterial Outer Membrane
Macrophages
Nanovaccines

Chemicals

Gold
Anti-Bacterial Agents
Bacterial Vaccines
Nanovaccines

Word Cloud

Created with Highcharts 10.0.0bacterialmembraneinfectionsantibacterialnanovaccineaeruginosaAuNP@HMV@SPsvesiclestoxinscausedmultiantigenichybridOMVssecretedmultidrug-resistantpathogensvaccinePseudomonasPHMVsMMVsouterimmunesepticemiapneumoniaBacterialespeciallyposesignificantthreatpublichealthVaccinescrucialtoolfightinghoweverclinicallyavailableexistscommonHereinreportedcombatutilizescreatedfusingmacrophagemitigatetoxiceffectsSPadsorbedsurfacepreservingstimulatingpropertiesGoldnanoparticlesAuNPsutilizedadjuvantenhanceresponsewithoutcomprisingsafetyinducesrobusthumoralcellularresponsesleadingdestructioncellsneutralizationmurinemodelsexhibitssuperiorprophylacticefficacycomparedcontrolgroupsincludingMMVs@SPsHMV@SPsachieving100%survivaland > 999%reductionlungloadstudyhighlightssafeeffectivetargetingbacteriaofferspromisingplatformdevelopingvaccinesutilizingcombatingcellvesicle

Similar Articles

Cited By (2)