Impact of Surface Enhanced Raman Spectroscopy in Catalysis.

Andrei Stefancu, Javier Aizpurua, Ivano Alessandri, Ilko Bald, Jeremy J Baumberg, Lucas V Besteiro, Phillip Christopher, Miguel Correa-Duarte, Bart de Nijs, Angela Demetriadou, Renee R Frontiera, Tomohiro Fukushima, Naomi J Halas, Prashant K Jain, Zee Hwan Kim, Dmitry Kurouski, Holger Lange, Jian-Feng Li, Luis M Liz-Marzán, Ivan T Lucas, Alfred J Meixner, Kei Murakoshi, Peter Nordlander, William J Peveler, Raul Quesada-Cabrera, Emilie Ringe, George C Schatz, Sebastian Schlücker, Zachary D Schultz, Emily Xi Tan, Zhong-Qun Tian, Lingzhi Wang, Bert M Weckhuysen, Wei Xie, Xing Yi Ling, Jinlong Zhang, Zhigang Zhao, Ru-Yu Zhou, Emiliano Cortés
Author Information
  1. Andrei Stefancu: Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany. ORCID
  2. Javier Aizpurua: IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Basque Country Spain. ORCID
  3. Ivano Alessandri: INSTM, UdR Brescia, Via Branze 38, Brescia 25123, Italy. ORCID
  4. Ilko Bald: Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany.
  5. Jeremy J Baumberg: Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K. ORCID
  6. Lucas V Besteiro: CINBIO, Universidade de Vigo, Vigo 36310, Spain.
  7. Phillip Christopher: Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States. ORCID
  8. Miguel Correa-Duarte: CINBIO, Universidade de Vigo, Vigo 36310, Spain.
  9. Bart de Nijs: Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K. ORCID
  10. Angela Demetriadou: School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K. ORCID
  11. Renee R Frontiera: Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States. ORCID
  12. Tomohiro Fukushima: Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan. ORCID
  13. Naomi J Halas: Department of Chemistry, Rice University, Houston, Texas 77005, United States. ORCID
  14. Prashant K Jain: Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States. ORCID
  15. Zee Hwan Kim: Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea. ORCID
  16. Dmitry Kurouski: Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States. ORCID
  17. Holger Lange: Institut für Physik und Astronomie, Universität Potsdam, 14476 Potsdam, Germany. ORCID
  18. Jian-Feng Li: State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China. ORCID
  19. Luis M Liz-Marzán: IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Basque Country Spain. ORCID
  20. Ivan T Lucas: Nantes Université, CNRS, IMN, F-44322 Nantes, France.
  21. Alfred J Meixner: Institute of Physical and Theoretical Chemistry, University of Tubingen, 72076 Tubingen, Germany. ORCID
  22. Kei Murakoshi: Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan. ORCID
  23. Peter Nordlander: Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States. ORCID
  24. William J Peveler: School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ U.K. ORCID
  25. Raul Quesada-Cabrera: Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
  26. Emilie Ringe: Department of Materials Science and Metallurgy and Department of Earth Sciences, University of Cambridge, Cambridge CB3 0FS, United Kingdom. ORCID
  27. George C Schatz: Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States. ORCID
  28. Sebastian Schlücker: Physical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, 45141 Essen, Germany. ORCID
  29. Zachary D Schultz: Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States. ORCID
  30. Emily Xi Tan: School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore.
  31. Zhong-Qun Tian: State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China. ORCID
  32. Lingzhi Wang: Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China. ORCID
  33. Bert M Weckhuysen: Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Department of Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands. ORCID
  34. Wei Xie: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China. ORCID
  35. Xing Yi Ling: School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore. ORCID
  36. Jinlong Zhang: Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China. ORCID
  37. Zhigang Zhao: Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China. ORCID
  38. Ru-Yu Zhou: State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China.
  39. Emiliano Cortés: Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany. ORCID

Abstract

Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential. Discovered in 1974, SERS has evolved into a mature and powerful analytical tool, transforming the way in which we detect molecules across disciplines. In catalysis, SERS has enabled insights into dynamic surface phenomena, facilitating the monitoring of the catalyst structure, adsorbate interactions, and reaction kinetics at very high spatial and temporal resolutions. This review explores the achievements as well as the future potential of SERS in the field of catalysis and energy conversion, thereby highlighting its role in advancing these critical areas of research.

Keywords

References

  1. Nat Commun. 2021 Nov 19;12(1):6759 [PMID: 34799553]
  2. Chem Commun (Camb). 2017 Sep 25;53(75):10382-10385 [PMID: 28875183]
  3. Nature. 2019 Apr;568(7750):78-82 [PMID: 30944493]
  4. Nano Lett. 2022 Jul 13;22(13):5544-5552 [PMID: 35699945]
  5. Nanotechnology. 2016 Oct 14;27(41):412001 [PMID: 27606801]
  6. Light Sci Appl. 2020 Jun 28;9:108 [PMID: 32612818]
  7. J Comput Chem. 2005 Dec;26(16):1701-18 [PMID: 16211538]
  8. Phys Rev Lett. 2000 Nov 6;85(19):4180-3 [PMID: 11056654]
  9. ACS Phys Chem Au. 2023 Oct 21;4(1):1-18 [PMID: 38283786]
  10. Nano Lett. 2022 Jul 27;22(14):5859-5865 [PMID: 35793541]
  11. J Am Chem Soc. 2021 Jan 27;143(3):1318-1322 [PMID: 33449677]
  12. J Chem Phys. 2016 Sep 7;145(9):094106 [PMID: 27608988]
  13. Chem Soc Rev. 2010 Dec;39(12):4718-30 [PMID: 20959916]
  14. J Phys Chem Lett. 2019 Oct 17;10(20):6026-6031 [PMID: 31538788]
  15. Natl Sci Rev. 2019 Nov;6(6):1169-1175 [PMID: 34691995]
  16. Nat Commun. 2014;5:3312 [PMID: 24518208]
  17. ACS Nano. 2023 Apr 11;17(7):6675-6686 [PMID: 36951254]
  18. Anal Chem. 2022 Oct 25;94(42):14565-14572 [PMID: 36219134]
  19. Nat Mater. 2015 Nov;14(11):1123-9 [PMID: 26366850]
  20. Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14819-14826 [PMID: 32541027]
  21. Nature. 2010 Mar 18;464(7287):392-5 [PMID: 20237566]
  22. Angew Chem Int Ed Engl. 2015 Jun 1;54(23):6909-12 [PMID: 25892101]
  23. Chem Commun (Camb). 2023 Sep 12;59(73):10976-10979 [PMID: 37614175]
  24. Acc Chem Res. 2023 Aug 15;56(16):2139-2150 [PMID: 37522593]
  25. Nat Commun. 2024 Mar 22;15(1):2582 [PMID: 38519477]
  26. JACS Au. 2023 Jul 06;3(7):1890-1901 [PMID: 37502158]
  27. Angew Chem Int Ed Engl. 2021 Mar 8;60(11):5708-5711 [PMID: 33325603]
  28. EES Catal. 2023 Oct 25;2(1):311-323 [PMID: 38222061]
  29. Science. 2022 Nov 25;378(6622):889-893 [PMID: 36423268]
  30. Sci Adv. 2022 Aug 12;8(32):eabq2727 [PMID: 35947656]
  31. Angew Chem Int Ed Engl. 2014 May 5;53(19):4756-95 [PMID: 24711218]
  32. Nat Commun. 2023 Aug 30;14(1):5289 [PMID: 37648700]
  33. Nat Nanotechnol. 2017 Feb;12(2):132-136 [PMID: 27870842]
  34. Nanoscale. 2020 Dec 23;12(48):24411-24418 [PMID: 33300518]
  35. Philos Trans R Soc Lond B Biol Sci. 2012 Dec 24;368(1611):20120026 [PMID: 23267180]
  36. Nano Lett. 2022 Sep 28;22(18):7699-7705 [PMID: 36073653]
  37. Nat Commun. 2012 May 08;3:825 [PMID: 22569369]
  38. Nano Lett. 2018 Jan 10;18(1):262-271 [PMID: 29206468]
  39. ACS Nano. 2018 Jan 23;12(1):585-595 [PMID: 29298379]
  40. Science. 2019 Feb 8;363(6427):615-619 [PMID: 30733414]
  41. ACS Nano. 2024 Feb 27;18(8):6638-6649 [PMID: 38350032]
  42. ACS Nano. 2019 Feb 26;13(2):1403-1411 [PMID: 30724079]
  43. ACS Nano. 2022 Sep 27;16(9):13279-13293 [PMID: 36067337]
  44. J Phys Chem Lett. 2019 Mar 21;10(6):1286-1291 [PMID: 30830793]
  45. Nat Nanotechnol. 2016 Feb;11(2):164-9 [PMID: 26595330]
  46. J Am Chem Soc. 2010 Dec 29;132(51):18034-7 [PMID: 21138263]
  47. Langmuir. 2011 Sep 6;27(17):10677-82 [PMID: 21819110]
  48. J Am Chem Soc. 2020 Apr 15;142(15):7161-7167 [PMID: 32207969]
  49. Nanoscale. 2016 Feb 14;8(6):3226-31 [PMID: 26791593]
  50. Spectrochim Acta A Mol Biomol Spectrosc. 2019 Nov 5;222:117086 [PMID: 31200266]
  51. ACS Nano. 2018 Jun 26;12(6):5848-5855 [PMID: 29883086]
  52. Nat Commun. 2016 Jan 28;7:10545 [PMID: 26817619]
  53. ACS Nano. 2023 Nov 28;17(22):23132-23143 [PMID: 37955967]
  54. J Phys Chem Lett. 2011 May 19;2(10):1199-203 [PMID: 26295326]
  55. Philos Trans A Math Phys Eng Sci. 2023 Oct 30;381(2259):20220343 [PMID: 37691466]
  56. Faraday Discuss. 2017 Dec 4;205:469-490 [PMID: 28913534]
  57. Nat Commun. 2017 May 24;8:15447 [PMID: 28537269]
  58. Small. 2012 Sep 24;8(18):2777-86 [PMID: 22777813]
  59. Nat Chem. 2020 Jun;12(6):551-559 [PMID: 32313237]
  60. Chem Soc Rev. 2016 Apr 21;45(8):2263-90 [PMID: 26848784]
  61. J Am Chem Soc. 2007 Dec 26;129(51):16249-56 [PMID: 18052068]
  62. Chem Sci. 2023 Oct 2;14(41):11441-11446 [PMID: 37886096]
  63. Anal Chem. 2019 Nov 5;91(21):13337-13342 [PMID: 31589030]
  64. Nano Lett. 2016 May 11;16(5):3399-407 [PMID: 27064549]
  65. Angew Chem Int Ed Engl. 2021 Sep 1;60(36):19774-19778 [PMID: 34184371]
  66. Small. 2022 Jun;18(25):e2201088 [PMID: 35616163]
  67. ACS Nano. 2022 Oct 25;16(10):17365-17375 [PMID: 36201312]
  68. J Phys Chem C Nanomater Interfaces. 2022 Mar 24;126(11):5333-5342 [PMID: 35359815]
  69. ACS Nano. 2020 Apr 28;14(4):3725-3735 [PMID: 32307982]
  70. ACS Photonics. 2021 Oct 20;8(10):2868-2875 [PMID: 34692898]
  71. ACS Nano. 2024 May 21;18(20):12589-12597 [PMID: 38709673]
  72. Sci Adv. 2021 Jun 4;7(23): [PMID: 34088670]
  73. J Am Chem Soc. 2014 Jan 22;136(3):999-1007 [PMID: 24364760]
  74. Colloids Surf B Biointerfaces. 2021 Dec;208:112064 [PMID: 34517219]
  75. Acc Chem Res. 2022 Jul 19;55(14):1889-1899 [PMID: 35776555]
  76. Phys Chem Chem Phys. 2016 Jul 20;18(29):19567-73 [PMID: 27156862]
  77. J Phys Chem Lett. 2023 Aug 31;14(34):7603-7610 [PMID: 37594383]
  78. Angew Chem Int Ed Engl. 2012 Feb 13;51(7):1592-6 [PMID: 22234987]
  79. ACS Nano. 2016 Jun 28;10(6):6291-8 [PMID: 27203727]
  80. Angew Chem Int Ed Engl. 2019 Oct 7;58(41):14452-14456 [PMID: 31332913]
  81. Nat Commun. 2016 Jul 14;7:12189 [PMID: 27412699]
  82. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Sep;62(3 Pt B):4318-24 [PMID: 11088961]
  83. Nano Lett. 2019 May 8;19(5):3267-3272 [PMID: 30994356]
  84. J Phys Chem Lett. 2023 May 18;14(19):4607-4616 [PMID: 37166115]
  85. Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2305932120 [PMID: 37874859]
  86. Chem Sci. 2023 Nov 28;14(47):13951-13961 [PMID: 38075667]
  87. J Chem Phys. 2022 Aug 28;157(8):084708 [PMID: 36050023]
  88. Nature. 2024 Apr;628(8009):771-775 [PMID: 38632399]
  89. Nat Commun. 2017 Dec 8;8(1):1993 [PMID: 29222510]
  90. Anal Chem. 2022 Jul 19;94(28):10151-10158 [PMID: 35794045]
  91. Acc Chem Res. 2013 Aug 20;46(8):1740-8 [PMID: 23815772]
  92. Chem Soc Rev. 2021 Feb 15;50(3):1522-1586 [PMID: 33496291]
  93. J Phys Chem Lett. 2020 May 21;11(10):4119-4123 [PMID: 32354215]
  94. J Am Chem Soc. 2013 Jan 9;135(1):301-8 [PMID: 23214430]
  95. Nat Commun. 2011;2:305 [PMID: 21556059]
  96. Anal Chem. 2000 Jan 1;72(1):38A-47A [PMID: 10655622]
  97. J Am Chem Soc. 2009 Oct 14;131(40):14466-72 [PMID: 19807188]
  98. ACS Nano. 2018 Oct 23;12(10):10159-10170 [PMID: 30226745]
  99. ACS Nanosci Au. 2021 Dec 15;1(1):38-46 [PMID: 34966910]
  100. Chem Rev. 2020 Nov 11;120(21):11956-11985 [PMID: 33104349]
  101. Anal Chem. 2018 Jan 16;90(2):1248-1254 [PMID: 29235850]
  102. J Am Chem Soc. 2018 Apr 4;140(13):4678-4683 [PMID: 29553728]
  103. J Am Chem Soc. 2019 May 22;141(20):8053-8057 [PMID: 31070906]
  104. J Phys Chem Lett. 2018 Jun 7;9(11):3074-3080 [PMID: 29782171]
  105. ACS Nano. 2021 Feb 23;15(2):2458-2467 [PMID: 32941001]
  106. Analyst. 2015 Aug 7;140(15):4922-31 [PMID: 26016991]
  107. Proc Natl Acad Sci U S A. 2021 May 18;118(20): [PMID: 33972426]
  108. J Phys Chem Lett. 2018 Dec 20;9(24):7146-7151 [PMID: 30525662]
  109. Nano Lett. 2012 Jun 13;12(6):3308-14 [PMID: 22616689]
  110. J Am Chem Soc. 2018 May 2;140(17):5853-5859 [PMID: 29649874]
  111. Sci Adv. 2019 Feb 08;5(2):eaav5340 [PMID: 30783628]
  112. ACS Nano. 2024 Jun 4;18(22):14000-14019 [PMID: 38764194]
  113. Sci Adv. 2022 Jun 24;8(25):eabp9285 [PMID: 35749500]
  114. J Am Chem Soc. 2013 Jan 30;135(4):1167-76 [PMID: 23294028]
  115. Catal Sci Technol. 2022 Mar 10;12(9):3028-3043 [PMID: 35662799]
  116. J Am Chem Soc. 2022 Dec 14;144(49):22337-22351 [PMID: 36473154]
  117. Acc Chem Res. 2020 Mar 17;53(3):588-598 [PMID: 31913015]
  118. J Am Chem Soc. 2022 Aug 17;144(32):14936-14944 [PMID: 35926980]
  119. ACS Catal. 2021 Jul 2;11(13):8370-8381 [PMID: 34239772]
  120. Angew Chem Int Ed Engl. 2015 Sep 1;54(36):10643-7 [PMID: 26184688]
  121. Nat Commun. 2021 May 10;12(1):2612 [PMID: 33972538]
  122. Science. 2016 Nov 11;354(6313):726-729 [PMID: 27846600]
  123. Acc Chem Res. 2009 Jun 16;42(6):734-42 [PMID: 19361212]
  124. Chem Commun (Camb). 2023 Dec 7;59(98):14524-14527 [PMID: 37966800]
  125. Mol Med. 2022 Apr 1;28(1):39 [PMID: 35365098]
  126. Chem Rev. 2016 Dec 28;116(24):14921-14981 [PMID: 27739670]
  127. Nanoscale. 2017 Jan 7;9(1):391-401 [PMID: 27924333]
  128. Angew Chem Int Ed Engl. 2012 Jul 23;51(30):7592-6 [PMID: 22806949]
  129. J Am Chem Soc. 2011 May 11;133(18):7197-204 [PMID: 21495637]
  130. Acc Chem Res. 2019 Nov 19;52(11):3008-3017 [PMID: 31609583]
  131. Science. 2015 Aug 7;349(6248):632-5 [PMID: 26250682]
  132. J Phys Chem Lett. 2020 Mar 5;11(5):1773-1780 [PMID: 32057245]
  133. Annu Rev Phys Chem. 2007;58:267-97 [PMID: 17067281]
  134. Nature. 2007 Dec 6;450(7171):810-2 [PMID: 18064000]
  135. J Am Chem Soc. 2020 Jan 15;142(2):715-719 [PMID: 31887023]
  136. ACS Nano. 2017 May 23;11(5):5094-5102 [PMID: 28463555]
  137. Chem Rev. 2020 Nov 11;120(21):12044-12088 [PMID: 32588624]
  138. Nat Commun. 2021 Jul 27;12(1):4557 [PMID: 34315909]
  139. ACS Nano. 2016 Jun 28;10(6):6108-15 [PMID: 27268233]
  140. Angew Chem Int Ed Engl. 2019 Jul 1;58(27):9049-9053 [PMID: 31025515]
  141. J Am Chem Soc. 2021 Feb 3;143(4):1816-1821 [PMID: 33492134]
  142. Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):8916-20 [PMID: 27444015]
  143. Science. 2018 Oct 5;362(6410):69-72 [PMID: 30287657]
  144. J Am Chem Soc. 2022 Feb 2;144(4):1663-1671 [PMID: 35073069]
  145. Nat Commun. 2023 Jun 6;14(1):3291 [PMID: 37280203]
  146. ACS Nano. 2023 Feb 14;17(3):3119-3127 [PMID: 36722817]
  147. ACS Nano. 2024 Apr 9;18(14):9773-9783 [PMID: 38529815]
  148. Anal Chem. 1998 Jun 1;70(11):2387-95 [PMID: 21644645]
  149. Environ Sci Technol. 2005 Mar 1;39(5):1346-53 [PMID: 15787376]
  150. Nat Chem. 2019 Sep;11(9):789-796 [PMID: 31427766]
  151. Science. 2021 Feb 19;371(6531):818-822 [PMID: 33602852]
  152. Acc Chem Res. 2019 Oct 15;52(10):2784-2792 [PMID: 31532621]
  153. Nat Commun. 2014 May 02;5:3809 [PMID: 24787630]
  154. Heliyon. 2023 Nov 30;9(12):e23109 [PMID: 38144349]
  155. Nat Mater. 2017 Sep;16(9):918-924 [PMID: 28783157]
  156. Phys Rev Lett. 2017 Apr 14;118(15):157402 [PMID: 28452500]
  157. Nat Commun. 2018 Aug 3;9(1):3056 [PMID: 30076295]
  158. J Am Chem Soc. 2016 Apr 6;138(13):4673-84 [PMID: 26964567]
  159. Nat Nanotechnol. 2020 Mar;15(3):207-211 [PMID: 31959932]
  160. J Am Chem Soc. 2022 Feb 9;144(5):2051-2055 [PMID: 34978804]
  161. J Am Chem Soc. 2022 Jul 13;144(27):12177-12183 [PMID: 35737737]
  162. ACS Nano. 2020 Jan 28;14(1):28-117 [PMID: 31478375]
  163. Nano Lett. 2015 May 13;15(5):3410-9 [PMID: 25915173]
  164. Nat Commun. 2016 Jun 03;7:11495 [PMID: 27255556]
  165. J Am Chem Soc. 2022 Feb 16;144(6):2755-2764 [PMID: 35107293]
  166. Nature. 2023 Feb;614(7947):230-232 [PMID: 36725943]
  167. Angew Chem Int Ed Engl. 2021 Apr 19;60(17):9306-9310 [PMID: 33523581]
  168. J Phys Chem Lett. 2014 Jan 2;5(1):14-9 [PMID: 26276174]
  169. Nano Lett. 2019 Mar 13;19(3):2037-2043 [PMID: 30803236]
  170. Faraday Discuss. 2017 Dec 4;205:31-65 [PMID: 28933479]
  171. J Chem Phys. 2005 Aug 22;123(8):084702 [PMID: 16164316]
  172. ACS Appl Mater Interfaces. 2019 Jul 10;11(27):24715-24724 [PMID: 31192584]
  173. ACS Nano. 2018 Aug 28;12(8):8330-8340 [PMID: 30089207]
  174. Chem Soc Rev. 2021 Mar 15;50(5):3519-3564 [PMID: 33501926]
  175. ACS Nano. 2022 Apr 26;16(4):6858-6865 [PMID: 35404582]
  176. J Am Chem Soc. 2016 Mar 9;138(9):2917-20 [PMID: 26924454]
  177. Small Methods. 2024 Jan;8(1):e2301243 [PMID: 37888799]
  178. Angew Chem Int Ed Engl. 2023 Jun 19;62(25):e202301065 [PMID: 37017550]
  179. Annu Rev Phys Chem. 2012;63:65-87 [PMID: 22224704]
  180. Nanoscale Horiz. 2023 Mar 27;8(4):499-508 [PMID: 36752733]
  181. Molecules. 2021 Aug 23;26(16): [PMID: 34443684]
  182. Angew Chem Int Ed Engl. 2022 Apr 11;61(16):e202117834 [PMID: 35068043]
  183. ChemCatChem. 2022 Jan 10;14(1): [PMID: 36204304]
  184. J Am Chem Soc. 2013 Jan 23;135(3):1009-14 [PMID: 23072537]
  185. Chem Commun (Camb). 2015 Feb 21;51(15):3069-72 [PMID: 25599345]
  186. Sci Rep. 2016 Oct 04;6:34521 [PMID: 27698368]
  187. ACS Appl Mater Interfaces. 2021 Apr 14;13(14):16498-16506 [PMID: 33784060]
  188. Nano Lett. 2023 Sep 13;23(17):8233-8240 [PMID: 37589668]
  189. Annu Rev Phys Chem. 2021 Apr 20;72:99-119 [PMID: 33267646]
  190. J Phys Chem Lett. 2023 Mar 23;14(11):2845-2853 [PMID: 36916655]
  191. Nat Rev Chem. 2022 Feb;6(2):89-111 [PMID: 37117296]
  192. Nanoscale. 2016 Oct 14;8(40):17532-17541 [PMID: 27722520]
  193. Nat Commun. 2023 Jun 15;14(1):3536 [PMID: 37321993]
  194. Angew Chem Int Ed Engl. 2022 Jul 11;61(28):e202205013 [PMID: 35532974]
  195. Science. 2011 Apr 15;332(6027):333-6 [PMID: 21493854]
  196. Angew Chem Int Ed Engl. 2024 Feb 19;63(8):e202317751 [PMID: 38179729]
  197. Nanoscale. 2016 May 21;8(19):10229-39 [PMID: 27123952]
  198. Anal Chem. 2022 Mar 22;94(11):4779-4786 [PMID: 35271253]
  199. J Am Chem Soc. 2023 Jun 7;145(22):12264-12274 [PMID: 37220278]
  200. J Am Chem Soc. 2011 May 25;133(20):8040-7 [PMID: 21524112]
  201. Nat Nanotechnol. 2019 Oct;14(10):981-987 [PMID: 31527841]
  202. Chemphyschem. 2018 Oct 5;19(19):2461-2467 [PMID: 29971926]
  203. J Am Chem Soc. 2015 Sep 16;137(36):11768-74 [PMID: 26325244]
  204. ACS Nano. 2022 Jan 25;16(1):847-854 [PMID: 34936347]
  205. Nat Mater. 2019 Jul;18(7):697-701 [PMID: 31036960]
  206. Nano Lett. 2015 Dec 9;15(12):7956-62 [PMID: 26580153]
  207. Angew Chem Int Ed Engl. 2023 Feb 1;62(6):e202217220 [PMID: 36478508]
  208. Adv Sci (Weinh). 2019 Sep 30;6(22):1901841 [PMID: 31763155]
  209. Chem Commun (Camb). 2021 Mar 4;57(18):2253-2256 [PMID: 33527959]
  210. J Phys Chem A. 2022 Apr 14;126(14):2278-2285 [PMID: 35380835]
  211. Nat Nanotechnol. 2023 Feb;18(2):111-123 [PMID: 36702956]
  212. IEEE Trans Image Process. 2017 Jul;26(7):3142-3155 [PMID: 28166495]
  213. ACS Nano. 2022 Mar 22;16(3):4072-4083 [PMID: 35179019]
  214. J Phys Chem Lett. 2016 Apr 21;7(8):1570-84 [PMID: 27075515]
  215. J Am Chem Soc. 2022 Dec 7;144(48):21908-21915 [PMID: 36419236]
  216. Nat Commun. 2022 Mar 28;13(1):1651 [PMID: 35347137]
  217. Angew Chem Int Ed Engl. 2022 Dec 5;61(49):e202212354 [PMID: 36217889]
  218. Angew Chem Int Ed Engl. 2020 Mar 27;59(14):5454-5462 [PMID: 31588641]
  219. Nano Lett. 2016 Dec 14;16(12):7774-7778 [PMID: 27797525]
  220. J Phys Chem Lett. 2019 Jun 6;10(11):3153-3158 [PMID: 31117676]
  221. Phys Rev Lett. 2012 Mar 9;108(10):106802 [PMID: 22463438]
  222. Nature. 2024 May;629(8011):295-306 [PMID: 38720037]
  223. ACS Nano. 2020 Aug 25;14(8):10608-10615 [PMID: 32806073]
  224. Anal Methods. 2022 May 13;14(18):1788-1796 [PMID: 35475484]
  225. Nano Lett. 2021 Oct 13;21(19):8348-8354 [PMID: 34582208]
  226. J Am Chem Soc. 2022 Aug 24;144(33):15047-15058 [PMID: 35951390]
  227. ACS Nano. 2023 Mar 14;17(5):4306-4314 [PMID: 36867719]
  228. Nanotechnology. 2014 Nov 21;25(46):465705 [PMID: 25360576]
  229. Chem Sci. 2021 Dec 1;13(5):1210-1224 [PMID: 35222907]
  230. Angew Chem Int Ed Engl. 2024 Apr 2;63(14):e202317978 [PMID: 38357744]
  231. Nat Nanotechnol. 2015 Jan;10(1):25-34 [PMID: 25559968]
  232. J Am Chem Soc. 2021 Oct 20;143(41):16877-16889 [PMID: 34609858]
  233. J Am Chem Soc. 2007 Feb 14;129(6):1658-62 [PMID: 17284005]
  234. J Phys Chem Lett. 2016 Nov 17;7(22):4629-4634 [PMID: 27802054]
  235. Annu Rev Phys Chem. 2023 Apr 24;74:521-545 [PMID: 36791779]
  236. Chem Rev. 2017 Jun 14;117(11):7583-7613 [PMID: 28610424]
  237. Nat Commun. 2015 Jul 17;6:7800 [PMID: 26183467]
  238. Sci China Mater. 2022;65(6):1601-1614 [PMID: 35281622]
  239. Chem Rev. 2020 Nov 11;120(21):11703-11809 [PMID: 33085890]
  240. Nat Rev Chem. 2022 Apr;6(4):259-274 [PMID: 37117871]
  241. ACS Nano. 2018 Oct 23;12(10):9982-9990 [PMID: 30142265]
  242. J Phys Chem C Nanomater Interfaces. 2022 Sep 1;126(34):14547-14557 [PMID: 37425396]
  243. J Phys Chem B. 2006 Feb 2;110(4):1944-8 [PMID: 16471765]
  244. Chem Rev. 2017 Apr 12;117(7):5070-5094 [PMID: 27966347]
  245. J Am Chem Soc. 2013 Apr 17;135(15):5541-4 [PMID: 23560442]
  246. J Chem Inf Model. 2017 Oct 23;57(10):2413-2423 [PMID: 28938072]
  247. Small. 2014 Apr 9;10(7):1294-8 [PMID: 24323940]
  248. Proc Natl Acad Sci U S A. 2022 Dec 27;119(52):e2211406119 [PMID: 36534806]
  249. ACS Nano. 2024 Feb 27;18(8):5995-5997 [PMID: 38410883]
  250. J Phys Chem Lett. 2023 May 11;14(18):4219-4224 [PMID: 37125787]
  251. Sci Rep. 2012;2:647 [PMID: 22970339]
  252. J Am Chem Soc. 2012 Aug 15;134(32):13492-500 [PMID: 22804227]
  253. Angew Chem Int Ed Engl. 2022 Oct 10;61(41):e202209446 [PMID: 35989227]
  254. Nanoscale. 2019 Nov 14;11(42):19877-19883 [PMID: 31599305]
  255. Chem Commun (Camb). 2011 Apr 21;47(15):4514-6 [PMID: 21399777]
  256. J Am Chem Soc. 2023 Aug 9;145(31):17351-17366 [PMID: 37524049]
  257. Chem Rev. 2023 Dec 13;123(23):13374-13418 [PMID: 37967448]
  258. Nano Lett. 2019 Jul 10;19(7):4413-4419 [PMID: 31244226]
  259. ACS Appl Mater Interfaces. 2023 Feb 8;15(5):6676-6686 [PMID: 36702454]
  260. Nat Commun. 2019 Nov 21;10(1):5318 [PMID: 31754221]
  261. Chem Rev. 2022 Jan 26;122(2):1654-1716 [PMID: 34606251]
  262. J Am Chem Soc. 2011 Dec 7;133(48):19302-5 [PMID: 22053855]
  263. Sensors (Basel). 2022 Jun 29;22(13): [PMID: 35808385]
  264. Nano Lett. 2019 Nov 13;19(11):7887-7894 [PMID: 31557442]
  265. J Am Chem Soc. 2014 Jul 16;136(28):9886-9 [PMID: 24960525]
  266. Nanoscale Horiz. 2022 May 31;7(6):626-633 [PMID: 35507320]
  267. Nat Commun. 2014 Jul 14;5:4424 [PMID: 25020075]
  268. Nature. 2021 Dec;600(7887):81-85 [PMID: 34853456]
  269. Nat Commun. 2022 Sep 30;13(1):5757 [PMID: 36180485]
  270. Nanoscale. 2018 Jan 25;10(4):1815-1824 [PMID: 29308817]
  271. Chemistry. 2018 Mar 12;24(15):3733-3741 [PMID: 29388737]
  272. J Am Chem Soc. 2015 Jun 24;137(24):7648-51 [PMID: 26052930]
  273. Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2312082121 [PMID: 38446854]
  274. Angew Chem Int Ed Engl. 2022 Aug 22;61(34):e202207184 [PMID: 35699678]
  275. Chem Rev. 2011 Jun 8;111(6):3858-87 [PMID: 21434614]
  276. Chemistry. 2019 Dec 10;25(69):15772-15778 [PMID: 31478273]
  277. Chem Soc Rev. 2024 Jan 22;53(2):656-683 [PMID: 38165865]
  278. Angew Chem Int Ed Engl. 2021 May 25;60(22):12532-12538 [PMID: 33734534]
  279. Angew Chem Int Ed Engl. 2019 Nov 4;58(45):16062-16066 [PMID: 31513325]
  280. Nano Lett. 2013 Jan 9;13(1):240-7 [PMID: 23194158]
  281. Angew Chem Int Ed Engl. 2016 Oct 24;55(44):13729-13733 [PMID: 27690263]
  282. J Am Chem Soc. 2017 Aug 2;139(30):10339-10346 [PMID: 28700232]
  283. Angew Chem Int Ed Engl. 2024 Mar 11;63(11):e202319920 [PMID: 38236010]
  284. J Phys Chem Lett. 2020 Dec 3;11(23):10114-10123 [PMID: 33191757]
  285. Small. 2013 Oct 11;9(19):3301-7 [PMID: 23606587]
  286. Nature. 2013 Jun 6;498(7452):82-6 [PMID: 23739426]
  287. Chem Commun (Camb). 2007 Sep 14;(34):3514-34 [PMID: 18080535]
  288. ChemCatChem. 2014 Dec;6(12):3342-3346 [PMID: 27158273]
  289. J Phys Chem Lett. 2019 Apr 18;10(8):1669-1675 [PMID: 30916970]
  290. Anal Chem. 2023 Jan 17;95(2):1703-1709 [PMID: 36583685]
  291. Angew Chem Int Ed Engl. 2020 Aug 24;59(35):15226-15231 [PMID: 32424964]
  292. J Am Chem Soc. 2013 Feb 6;135(5):1657-60 [PMID: 23186150]
  293. ACS Nano. 2020 Sep 22;14(9):11363-11372 [PMID: 32790343]
  294. Nat Protoc. 2019 Apr;14(4):1169-1193 [PMID: 30911174]
  295. Small. 2009 Mar;5(3):336-40 [PMID: 19123175]

Word Cloud

Created with Highcharts 10.0.0SERSCatalysisRamanprocessescatalystsSpectroscopycatalysisSurfaceEnhancedEnergystandsindispensablecornerstonemodernsocietyunderpinningproduction80%manufacturedgoodsdriving90%industrialchemicaldemandefficientsustainablegrowsbetterneededUnderstandingworkingprincipleskeylast50yearssurface-enhancedbecomeessentialDiscovered1974evolvedmaturepowerfulanalyticaltooltransformingwaydetectmoleculesacrossdisciplinesenabledinsightsdynamicsurfacephenomenafacilitatingmonitoringcatalyststructureadsorbateinteractionsreactionkineticshighspatialtemporalresolutionsreviewexploresachievementswellfuturepotentialfieldenergyconversiontherebyhighlightingroleadvancingcriticalareasresearchImpactElectrocatalysisConversionStoragePhotocatalysisPlasmonicScatteringThermocatalysis

Similar Articles

Cited By