Characterization and genomic analysis of the lytic bacteriophage vB_EclM_HK6 as a potential approach to biocontrol the spread of Enterobacter cloacae contaminating food.

Hasnaa R Temsaah, Ahmed F Azmy, Amr E Ahmed, Hend Ali Elshebrawy, Nahed Gomaa Kasem, Fatma A El-Gohary, C��dric Lood, Rob Lavigne, Karim Abdelkader
Author Information
  1. Hasnaa R Temsaah: Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt.
  2. Ahmed F Azmy: Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt.
  3. Amr E Ahmed: Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt.
  4. Hend Ali Elshebrawy: Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
  5. Nahed Gomaa Kasem: Department of Food Hygiene, Safety, and Technology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
  6. Fatma A El-Gohary: Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
  7. C��dric Lood: Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Louvain, 3001, Belgium.
  8. Rob Lavigne: Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, Louvain, 3001, Belgium.
  9. Karim Abdelkader: Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt. kareem.sofy@pharm.bsu.edu.eg.

Abstract

BACKGROUND: Increased prevalence of Enterobacter cloacae within food products underscores food as an underexplored reservoir for antibiotic resistance, thus requiring particular intervention. Bacteriophages have been explored as a promising approach for controlling bacterial growth in different matrices. Moreover, their specific interaction and self-replication, put them apart from traditional methods for controlling bacteria in different matrices.
METHODS: Sixteen Enterobacter cloacae strains were recovered from raw chicken. These strains were used to isolate bacteriophages using enrichment protocol. The broad-spectrum bacteriophage was evaluated in terms of thermal, pH, shearing stress and storge. Moreover, its infection kinetics, in vitro antibacterial activity, cytotoxicity were also assessed. Genomic sequencing was performed to exclude any potential virulence or resistance genes. Finally, the capability of the isolated phages to control bacterial growth in different chicken samples was assessed alone and in combination with sodium nitrite.
RESULTS: The lytic bacteriophage vB_EclM_HK6 was isolated and showed the broadest spectrum being able to infect 8/16 E. cloacae strains with a lytic activity against its host strain, E. cloacae EC21, as low as MOI of 10. The phage displays a latent period of 10 min and burst size of 115��������44 and resistance frequency of 5.7��������10��������3.0��������10. Stability assessment revealed a thermal tolerance up to 60 ��C, wide range pH stability (3-10) and the ability to withstand shearing stress up to 250 rpm. HK6 shows no cytotoxicity against oral epithelial cells up to 10 PFU/ml. Genomic analysis revealed a Strabovirus with total size of 177,845 bp that is free from known resistance and virulence genes. Finally, HK6 pretreatment of raw chicken, chicken nuggets and ready-made cheese salad shows a reduced bacterial count up to 4.6, 2.96 and 2.81 log-units, respectively. Moreover, combing HK6 with sodium nitrite further improved the antibacterial activity in both raw chicken and chicken nuggets without significant enhancement in case of cheese salad.
CONCLUSION: Enterobacter bacteriophage vB_EclM_HK6 presents a safe and effective approach for controlling E. cloacae contaminating stored chicken food samples. Moreover, they could be combined with a reduced concentrations of sodium nitrite to improve the killing capacity.

Keywords

References

  1. Nucleic Acids Res. 2023 Jul 5;51(W1):W484-W492 [PMID: 37140037]
  2. J Immunol Methods. 1983 Dec 16;65(1-2):55-63 [PMID: 6606682]
  3. Compr Rev Food Sci Food Saf. 2023 May;22(3):2235-2266 [PMID: 37009835]
  4. Front Microbiol. 2015 Nov 13;6:1271 [PMID: 26617601]
  5. Viruses. 2020 Nov 06;12(11): [PMID: 33172115]
  6. Viruses. 2022 Jul 12;14(7): [PMID: 35891499]
  7. J Antimicrob Chemother. 2019 Aug 1;74(8):2209-2213 [PMID: 31102511]
  8. J Genet Eng Biotechnol. 2022 Sep 12;20(1):133 [PMID: 36094767]
  9. Vet World. 2023 Feb;16(2):403-413 [PMID: 37042006]
  10. Meat Sci. 2020 Apr;162:108027 [PMID: 31838338]
  11. Food Environ Virol. 2023 Sep;15(3):236-245 [PMID: 37306924]
  12. Int J Food Microbiol. 2023 Mar 16;389:110097 [PMID: 36731200]
  13. Bioinformatics. 2015 Oct 15;31(20):3350-2 [PMID: 26099265]
  14. Microb Genom. 2022 Jan;8(1): [PMID: 35072601]
  15. Nucleic Acids Res. 2017 Jan 4;45(D1):D566-D573 [PMID: 27789705]
  16. Methods Mol Biol. 2019;1962:1-14 [PMID: 31020551]
  17. Food Microbiol. 2022 Jun;104:103978 [PMID: 35287807]
  18. AMB Express. 2023 Nov 20;13(1):130 [PMID: 37985524]
  19. Future Microbiol. 2012 Jul;7(7):887-902 [PMID: 22827309]
  20. Appl Microbiol Biotechnol. 2018 Mar;102(6):2563-2581 [PMID: 29442169]
  21. Int J Food Microbiol. 2017 Feb 21;243:52-57 [PMID: 27978506]
  22. Folia Microbiol (Praha). 2023 Dec;68(6):911-924 [PMID: 37184760]
  23. Int J Mol Sci. 2024 Jan 10;25(2): [PMID: 38255926]
  24. Infect Immun. 1998 Feb;66(2):645-9 [PMID: 9453621]
  25. Appl Environ Microbiol. 2020 Sep 17;86(19): [PMID: 32709718]
  26. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W244-8 [PMID: 15980461]
  27. Front Microbiol. 2019 Mar 21;10:574 [PMID: 30949158]
  28. Nucleic Acids Res. 2001 Jan 1;29(1):37-40 [PMID: 11125043]
  29. J Hosp Infect. 1992 Mar;20(3):137-40 [PMID: 1348769]
  30. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  31. Methods Mol Biol. 2009;501:69-76 [PMID: 19066811]
  32. Curr Protoc Bioinformatics. 2020 Jun;70(1):e102 [PMID: 32559359]
  33. Int J Food Microbiol. 2017 Jul 17;253:1-11 [PMID: 28460269]
  34. Bioinformatics. 2017 Aug 01;33(15):2379-2380 [PMID: 28379287]
  35. BMC Microbiol. 2022 Oct 21;22(1):255 [PMID: 36266616]
  36. Microorganisms. 2020 Aug 12;8(8): [PMID: 32806643]
  37. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  38. Virology. 2009 May 25;388(1):21-30 [PMID: 19339031]
  39. Bacteriophage. 2011 Mar;1(2):94-100 [PMID: 22334865]
  40. Virus Res. 2023 Jan 15;324:199025 [PMID: 36528171]
  41. PLoS One. 2012;7(10):e47636 [PMID: 23110085]
  42. Curr Protoc Bioinformatics. 2020 Mar;69(1):e90 [PMID: 31851420]
  43. Life Sci. 2023 Jun 1;322:121639 [PMID: 37001805]
  44. Nat Rev Microbiol. 2015 Dec;13(12):777-86 [PMID: 26548913]
  45. Int J Food Microbiol. 2015 Aug 17;207:8-15 [PMID: 25950852]
  46. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  47. Viruses. 2019 Jan 24;11(2): [PMID: 30678377]

MeSH Term

Enterobacter cloacae
Animals
Chickens
Bacteriophages
Food Microbiology
Genome, Viral
Genomics
Sodium Nitrite
Food Contamination
Anti-Bacterial Agents

Chemicals

Sodium Nitrite
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0chickencloacaeEnterobacterresistancefoodMoreoverbacteriophagenitriteapproachcontrollingbacterialdifferentstrainsrawactivitysodiumlyticvB_EclM_HK6E10HK6growthmatricesthermalpHshearingstressantibacterialcytotoxicityassessedGenomicpotentialvirulencegenesFinallyisolatedsamplessizerevealedshowsanalysisnuggetscheesesaladreduced2contaminatingBACKGROUND:IncreasedprevalencewithinproductsunderscoresunderexploredreservoirantibioticthusrequiringparticularinterventionBacteriophagesexploredpromisingspecificinteractionself-replicationputaparttraditionalmethodsbacteriaMETHODS:Sixteenrecoveredusedisolatebacteriophagesusingenrichmentprotocolbroad-spectrumevaluatedtermsstorgeinfectionkineticsvitroalsosequencingperformedexcludecapabilityphagescontrolalonecombinationRESULTS:showedbroadestspectrumableinfect8/16hoststrainEC21lowMOIphagedisplayslatentperiodminburst115��������44frequency57��������10��������30��������10Stabilityassessmenttolerance60��Cwiderangestability3-10abilitywithstand250rpmoralepithelialcellsPFU/mlStrabovirustotal177845bpfreeknownpretreatmentready-madecount469681log-unitsrespectivelycombingimprovedwithoutsignificantenhancementcaseCONCLUSION:presentssafeeffectivestoredcombinedconcentrationsimprovekillingcapacityCharacterizationgenomicbiocontrolspreadAntibioticBacteriophageRawfilletsSodium

Similar Articles

Cited By