The dynamic nexus between economic growth, renewable energy use, urbanization, industrialization, tourism, green supply chain management, and CO.

Jian Chen Wang, Min Qu, Tian Pei Xu, Sujeong Choi
Author Information
  1. Jian Chen Wang: Institute for Sustainable Development, Macau University of Science and Technology, Macua, 999078, China.
  2. Min Qu: School of Digital Commerce, Jiangsu Vocational Institute of Commerce, Nanjing, 211168, China.
  3. Tian Pei Xu: College of Communication, Hulunbuir University, Hulunbuir, 021008, China.
  4. Sujeong Choi: Department of Electronic Commerce, Mokpo National University, Mokpo, 58554, South Korea.

Abstract

Since 2012, China has pursued an "ecological civilization" policy to promote green energy, increase environmental protection, and transition to more sustainable growth models. The complicated positive trends in energy consumption, more sustainable economic growth, and ecological management are obscured by China's persistent, significant dependence on fossil fuels, particularly coal. The study aims to analyze how renewable energy use in China affects carbon dioxide emissions and how those impacts change over time, as well as urbanization, industrialization, tourism, and green supply chain management. The DOLS dynamic system method used historical data from 1995 to 2022. The DOLS results show a positive and statistically significant economic growth coefficient in the long term, suggesting that an increase of only one percent in CO��� emissions rise would be proportional to a surge in economic growth. Furthermore, using renewable energy sources correlates with long-term sustainability negatively and significantly. The results show reducing CO��� emissions and boosting renewable energy use by 1 %. Furthermore, the long-run coefficients for industrialization and urbanization are positive and statistically significant, indicating that a 1 % increase in either component results in a comparable increase in CO��� emissions. Sustainable logistics and tourism have negative and statistically significant coefficients, meaning that a one percent increase will gradually decrease carbon dioxide emissions. The estimated findings hold up when using other estimators, such as the commonly used co-integrating regression (CCR) strategy and fully modified least squares (FMOLS). When Granger causality is coupled, the test also catches the variables' causal link. test. To achieve environmental sustainability, the essay suggests using robust regulatory policy tools to curb ecological deterioration.

Keywords

References

  1. Environ Sci Pollut Res Int. 2020 Dec;27(36):45476-45486 [PMID: 32794094]
  2. Environ Sci Pollut Res Int. 2024 Jul;31(34):46178-46193 [PMID: 37084046]
  3. Environ Sci Pollut Res Int. 2022 Apr;29(19):27651-27663 [PMID: 34984607]
  4. Environ Sci Pollut Res Int. 2022 Apr;29(19):27703-27718 [PMID: 34984617]
  5. Technol Forecast Soc Change. 2020 Dec;161:120255 [PMID: 32904903]
  6. Environ Sci Pollut Res Int. 2022 May;29(21):31330-31347 [PMID: 35001288]
  7. Nature. 2020 Oct;586(7830):482-483 [PMID: 33077972]
  8. Environ Sci Pollut Res Int. 2022 May;29(21):31972-32001 [PMID: 35013976]
  9. Environ Sci Pollut Res Int. 2022 Jul;29(33):49752-49769 [PMID: 35218493]
  10. GeoJournal. 2023;88(1):1181-1188 [PMID: 35309019]
  11. Environ Dev Sustain. 2023 Feb 27;:1-30 [PMID: 37363002]
  12. Environ Sci Pollut Res Int. 2021 Mar;28(9):11317-11322 [PMID: 33118067]
  13. Sci Total Environ. 2023 Aug 20;887:164115 [PMID: 37172848]
  14. Environ Sci Pollut Res Int. 2023 May 2;: [PMID: 37129823]
  15. Heliyon. 2023 Jul 08;9(7):e18074 [PMID: 37501984]
  16. Environ Sci Pollut Res Int. 2022 Sep;29(44):66204-66221 [PMID: 35501440]
  17. Environ Sci Pollut Res Int. 2023 Mar;30(11):29065-29085 [PMID: 36401702]
  18. Appl Energy. 2021 May 1;289:116666 [PMID: 36567826]
  19. Environ Sci Pollut Res Int. 2020 Aug;27(23):28867-28889 [PMID: 32418102]
  20. Environ Res. 2023 Aug 15;231(Pt 1):116034 [PMID: 37142083]
  21. Heliyon. 2022 Feb 16;8(2):e08941 [PMID: 35243063]
  22. Environ Sci Pollut Res Int. 2022 Sep;29(44):67170-67179 [PMID: 35524097]
  23. Environ Sci Pollut Res Int. 2023 Apr;30(17):50376-50391 [PMID: 36795214]
  24. Environ Sci Pollut Res Int. 2022 Jan;29(4):5360-5377 [PMID: 34417974]
  25. Environ Sci Pollut Res Int. 2021 Apr;28(15):18995-19007 [PMID: 32564312]
  26. Heliyon. 2024 Feb 18;10(4):e26481 [PMID: 38420430]
  27. Environ Sci Pollut Res Int. 2021 Jan;28(2):2031-2051 [PMID: 32869180]
  28. Environ Sci Pollut Res Int. 2023 Mar;30(11):31171-31187 [PMID: 36445521]
  29. J Environ Manage. 2021 Nov 1;297:113316 [PMID: 34293673]
  30. Environ Sci Pollut Res Int. 2020 Nov;27(31):38513-38536 [PMID: 32770337]
  31. Environ Sci Pollut Res Int. 2023 Jan;30(1):640-653 [PMID: 35906522]

Word Cloud

Created with Highcharts 10.0.0energyincreasegrowthemissionseconomicmanagementsignificantrenewableChinagreenpositiveuseurbanizationindustrializationtourismsupplychainresultsstatisticallyCO���usingpolicyenvironmentalsustainableconsumptionecologicalcarbondioxideDOLSdynamicusedshowonepercentFurthermoresustainability1 %coefficientstestSince2012pursued"ecologicalcivilization"promoteprotectiontransitionmodelscomplicatedtrendsobscuredChina'spersistentdependencefossilfuelsparticularlycoalstudyaimsanalyzeaffectsimpactschangetimewellsystemmethodhistoricaldata19952022coefficientlongtermsuggestingriseproportionalsurgesourcescorrelateslong-termnegativelysignificantlyreducingboostinglong-runindicatingeithercomponentcomparableSustainablelogisticsnegativemeaningwillgraduallydecreaseestimatedfindingsholdestimatorscommonlyco-integratingregressionCCRstrategyfullymodifiedleastsquaresFMOLSGrangercausalitycoupledalsocatchesvariables'causallinkachieveessaysuggestsrobustregulatorytoolscurbdeteriorationnexusCOCarbonemissionGreenRenewableTourism

Similar Articles

Cited By