Effect of Endurance Exercise Training on Gut Microbiota and ER Stress.

Eun Ji Yoon, So Rok Lee, Beulah Favour Ortutu, Jong-Oh Kim, Varun Jaiswal, Sooyeon Baek, Su-In Yoon, Sang Ki Lee, Jin Hwan Yoon, Hae-Jeung Lee, Jin Ah Cho
Author Information
  1. Eun Ji Yoon: Research Center for Microbiome-Brain Disorders, Chungnam University, Daejeon 34134, Republic of Korea.
  2. So Rok Lee: Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea. ORCID
  3. Beulah Favour Ortutu: Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea. ORCID
  4. Jong-Oh Kim: Department of Sport Science, Hannam University, Daejeon 34430, Republic of Korea.
  5. Varun Jaiswal: Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea. ORCID
  6. Sooyeon Baek: Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea.
  7. Su-In Yoon: Research Center for Microbiome-Brain Disorders, Chungnam University, Daejeon 34134, Republic of Korea.
  8. Sang Ki Lee: Department of Sport Science, Chungnam National University, Daejeon 34134, Republic of Korea.
  9. Jin Hwan Yoon: Department of Sport Science, Hannam University, Daejeon 34430, Republic of Korea.
  10. Hae-Jeung Lee: Department of Food and Nutrition, Gachon University, Gyeonggi-do 13120, Republic of Korea. ORCID
  11. Jin Ah Cho: Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea. ORCID

Abstract

Regular exercise as part of one's lifestyle is well-recognized for its beneficial effect on several diseases such as cardiovascular disease and obesity; however, many questions remain unanswered regarding the effects of exercise on the gut environment. This study aimed to investigate the impact of long-term endurance exercise on modulating inflammation and endoplasmic reticulum (ER) stress. Fifteen-week-old male Sprague-Dawley (SD) rats were subjected to six months of endurance treadmill training, while age-matched controls remained sedentary. Results showed that IL-6 mRNA levels in colon tissues were significantly higher in the exercise group compared to the sedentary group. Exercise activated a significant ER stress-induced survival pathway by increasing BiP and phosphorylation of eIF2α (p-eIF2α) expressions in the liver and colon, while decreasing CHOP in the liver. Gene expressions of MUC2, Occludin, and Claudin-2 were increased in the colon of the exercise group, indicating enhanced intestinal integrity. Furthermore, the data showed a positive correlation between microbiota α-diversity and BiP (r = 0.464~0.677, < 0.05). Populations of Desulfovibrio C21 c20 were significantly greater in the exercise group than the sedentary group. Additionally, predicted functions of the gut microbial community in terms of enzymes and pathways supported the enhancement of fatty-acid-related processes by exercise. These findings suggest that prolonged endurance exercise can affect the colon environment, which is likely related to changes in inflammation, ER stress, mucin layers and tight junctions, associated with modifications in the gut microbiome.

Keywords

References

  1. Int J Mol Sci. 2024 Jul 27;25(15): [PMID: 39125769]
  2. Physiol Rep. 2024 May;12(10):e16087 [PMID: 38783385]
  3. J Sport Health Sci. 2020 Jan;9(1):82-89 [PMID: 31921483]
  4. Nat Biotechnol. 2020 Jun;38(6):685-688 [PMID: 32483366]
  5. Environ Microbiol. 2022 Sep;24(9):4220-4235 [PMID: 34270161]
  6. Sports Med. 2017 Feb;47(2):277-293 [PMID: 27260682]
  7. Front Physiol. 2020 Jan 09;10:1550 [PMID: 31992987]
  8. FEBS J. 2021 Dec;288(24):7060-7072 [PMID: 33507606]
  9. Neurobiol Dis. 2020 Feb;134:104621 [PMID: 31628992]
  10. Scand J Med Sci Sports. 2015 Oct;25(5):e442-50 [PMID: 25438993]
  11. Nat Rev Cardiol. 2020 Jul;17(7):402-412 [PMID: 32152528]
  12. Int J Sports Physiol Perform. 2022 Jun 03;17(8):1312-1315 [PMID: 35661059]
  13. Nutr Metab (Lond). 2019 Mar 05;16:17 [PMID: 30873215]
  14. Metabolism. 2017 Apr;69:76-86 [PMID: 28285654]
  15. Antioxid Redox Signal. 2014 Jul 20;21(3):396-413 [PMID: 24702237]
  16. Nutrients. 2017 Feb 20;9(2): [PMID: 28230742]
  17. Cell Metab. 2022 Feb 1;34(2):329-345.e8 [PMID: 35030324]
  18. World J Gastroenterol. 2015 Aug 7;21(29):8787-803 [PMID: 26269668]
  19. J Int Soc Sports Nutr. 2016 Nov 24;13:43 [PMID: 27924137]
  20. Nature. 2019 May;569(7758):641-648 [PMID: 31142853]
  21. Nucleic Acids Res. 2020 Jan 8;48(D1):D445-D453 [PMID: 31586394]
  22. Cureus. 2023 Jan 7;15(1):e33475 [PMID: 36756008]
  23. Eur J Investig Health Psychol Educ. 2023 Jun 19;13(6):1082-1096 [PMID: 37366786]
  24. J Biol Chem. 2015 Jun 12;290(24):15327-36 [PMID: 25925952]
  25. J Sport Health Sci. 2020 Sep;9(5):472-478 [PMID: 32928450]
  26. Int J Mol Sci. 2021 Mar 04;22(5): [PMID: 33806433]
  27. Signal Transduct Target Ther. 2023 Sep 15;8(1):352 [PMID: 37709773]
  28. Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361 [PMID: 27899662]
  29. J Nutr Biochem. 2018 Nov;61:111-128 [PMID: 30196243]
  30. J Sport Health Sci. 2017 Jun;6(2):179-197 [PMID: 30356594]
  31. Science. 2015 Jul 31;349(6247):500-6 [PMID: 26228140]
  32. Poult Sci. 2023 Feb;102(2):102353 [PMID: 36473379]
  33. Br J Sports Med. 2020 Dec;54(24):1451-1462 [PMID: 33239350]
  34. J Exerc Rehabil. 2018 Feb 26;14(1):32-38 [PMID: 29511650]
  35. Curr Protoc Bioinformatics. 2020 Jun;70(1):e100 [PMID: 32343490]
  36. J Exp Med. 2019 Jan 7;216(1):20-40 [PMID: 30322864]
  37. Appl Microbiol Biotechnol. 2019 Jul;103(13):5311-5321 [PMID: 30993386]
  38. J Agric Food Chem. 2019 Jan 16;67(2):653-660 [PMID: 30558417]
  39. Microbiome. 2018 May 17;6(1):90 [PMID: 29773078]
  40. J Cell Physiol. 2018 Jan;233(1):67-78 [PMID: 28177127]
  41. Rev Diabet Stud. 2019;15:35-48 [PMID: 31380886]
  42. Vascul Pharmacol. 2018 Jan;100:1-19 [PMID: 28579545]
  43. Lancet Glob Health. 2018 Oct;6(10):e1077-e1086 [PMID: 30193830]
  44. Biomed Res Int. 2021 Feb 11;2021:1947928 [PMID: 33628774]
  45. BMC Biol. 2018 Feb 01;16(1):19 [PMID: 29391007]
  46. AMB Express. 2018 Jun 16;8(1):98 [PMID: 29909506]
  47. Diabetes Metab Syndr Obes. 2020 Jul 08;13:2433-2442 [PMID: 32753926]
  48. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  49. Nutrients. 2019 Jul 19;11(7): [PMID: 31331009]

Grants

  1. NRF-2022R1A2C1091570/Ministry of Education
  2. NRF-2020R1A5A8017671/National Research Foundation of Korea

MeSH Term

Animals
Endoplasmic Reticulum Stress
Gastrointestinal Microbiome
Male
Physical Conditioning, Animal
Rats
Rats, Sprague-Dawley
Liver
Colon
Physical Endurance
Interleukin-6
Endurance Training
Mucin-2

Chemicals

Interleukin-6
Mucin-2

Word Cloud

Created with Highcharts 10.0.0exercisegroupgutenduranceERcoloninflammationstresssedentaryenvironmentendoplasmicreticulumshowedsignificantlyExerciseBiPexpressionsliver0tightmicrobiomeRegularpartone'slifestylewell-recognizedbeneficialeffectseveraldiseasescardiovasculardiseaseobesityhowevermanyquestionsremainunansweredregardingeffectsstudyaimedinvestigateimpactlong-termmodulatingFifteen-week-oldmaleSprague-DawleySDratssubjectedsixmonthstreadmilltrainingage-matchedcontrolsremainedResultsIL-6mRNAlevelstissueshighercomparedactivatedsignificantstress-inducedsurvivalpathwayincreasingphosphorylationeIF2αp-eIF2αdecreasingCHOPGeneMUC2OccludinClaudin-2increasedindicatingenhancedintestinalintegrityFurthermoredatapositivecorrelationmicrobiotaα-diversityr=464~0677<05PopulationsDesulfovibrioC21c20greaterAdditionallypredictedfunctionsmicrobialcommunitytermsenzymespathwayssupportedenhancementfatty-acid-relatedprocessesfindingssuggestprolongedcanaffectlikelyrelatedchangesmucinlayersjunctionsassociatedmodificationsEffectEnduranceTrainingGutMicrobiotaStressjunction

Similar Articles

Cited By