Prussian-Blue-Nanozyme-Enhanced Simultaneous Immunochromatographic Control of Two Relevant Bacterial Pathogens in Milk.

Olga D Hendrickson, Nadezhda A Byzova, Boris B Dzantiev, Anatoly V Zherdev
Author Information
  1. Olga D Hendrickson: A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia. ORCID
  2. Nadezhda A Byzova: A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia.
  3. Boris B Dzantiev: A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia. ORCID
  4. Anatoly V Zherdev: A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia. ORCID

Abstract

and are relevant foodborne bacterial pathogens which may cause serious intoxications and infectious diseases in humans. In this study, a sensitive immunochromatographic analysis (ICA) for the simultaneous detection of these two pathogens was developed. For this, test strips containing two test zones with specific monoclonal antibodies (MAb) against lipopolysaccharides of and and one control zone with secondary antibodies were designed, and the double-assay conditions were optimized to ensure high analytical parameters. Prussian blue nanoparticles (PBNPs) were used as nanozyme labels and were conjugated with specific MAbs to perform a sandwich format of the ICA. Peroxidase-mimic properties of PBNPs allowed for the catalytic amplification of the colorimetric signal on test strips, enhancing the assay sensitivity. The limits of detection (LODs) of and cells were 2 × 10 and 7 × 10 cells/mL, respectively. LODs were 100-fold less than those achieved due to the ICA based on the traditional gold label. The developed double ICA was approbated for the detection of bacteria in cow milk samples, which were processed by simple dilution by buffer before the assay. For and , the recoveries from milk were 86.3 ± 9.8 and 118.2 ± 10.5% and correlated well with those estimated by the enzyme-linked immunosorbent assay as a reference method. The proposed approach was characterized by high specificity: no cross-reactivity with other bacteria strains was observed. The assay satisfies the requirements for rapid tests: a full cycle from sample acquisition to result assessment in less than half an hour. The developed ICA has a high application potential for the multiplex detection of other foodborne pathogens.

Keywords

References

  1. Drug Discov Today. 2020 Aug;25(8):1431-1443 [PMID: 32492486]
  2. Biosensors (Basel). 2022 Dec 02;12(12): [PMID: 36551085]
  3. Microb Ecol. 2023 Nov;86(4):2231-2251 [PMID: 37479828]
  4. Int J Environ Res Public Health. 2022 Jun 17;19(12): [PMID: 35742689]
  5. J Mater Chem B. 2023 Jun 21;11(24):5272-5300 [PMID: 36748242]
  6. Small. 2024 May;20(22):e2310014 [PMID: 38193262]
  7. Int J Environ Res Public Health. 2021 Apr 26;18(9): [PMID: 33925871]
  8. Colloids Surf B Biointerfaces. 2023 Jun;226:113319 [PMID: 37120932]
  9. Anal Chim Acta. 2018 Dec 21;1040:143-149 [PMID: 30327104]
  10. Compr Rev Food Sci Food Saf. 2024 Jul;23(4):e13410 [PMID: 39030812]
  11. J Vet Res. 2023 Dec 19;67(4):537-544 [PMID: 38130454]
  12. Int J Environ Res Public Health. 2018 Apr 26;15(5): [PMID: 29701663]
  13. Animal. 2022 Feb;16 Suppl 1:100376 [PMID: 34836809]
  14. Glob Public Health. 2020 Dec;15(12):1902-1916 [PMID: 32573352]
  15. Food Chem. 2023 Aug 15;417:135897 [PMID: 36924717]
  16. World J Microbiol Biotechnol. 2024 Jul 16;40(9):269 [PMID: 39009934]
  17. Anal Chem. 2024 May 28;96(21):8543-8551 [PMID: 38748432]
  18. Foods. 2024 Feb 06;13(4): [PMID: 38397483]
  19. Crit Rev Food Sci Nutr. 2024;64(27):9910-9932 [PMID: 37350754]
  20. Talanta. 2014 Feb;119:178-80 [PMID: 24401401]
  21. Agric Food Secur. 2023;12(1):10 [PMID: 37193360]
  22. Mikrochim Acta. 2023 Jan 18;190(2):57 [PMID: 36652031]
  23. Animals (Basel). 2023 Nov 27;13(23): [PMID: 38067017]
  24. Clin Microbiol Rev. 2023 Mar 23;36(1):e0006019 [PMID: 36475874]
  25. Anal Methods. 2022 Jun 23;14(24):2423-2430 [PMID: 35674012]
  26. Antibiotics (Basel). 2024 Jan 13;13(1): [PMID: 38247636]
  27. Trop Med Infect Dis. 2021 Jun 02;6(2): [PMID: 34199650]
  28. Biosens Bioelectron. 2022 Oct 15;214:114525 [PMID: 35820250]
  29. Food Chem. 2022 Feb 1;369:131008 [PMID: 34500205]
  30. Small. 2023 Mar;19(11):e2207142 [PMID: 36651009]
  31. Biosensors (Basel). 2023 Mar 21;13(3): [PMID: 36979622]
  32. J Food Sci Technol. 2021 Jan;58(1):292-301 [PMID: 33505073]
  33. Foods. 2023 Apr 23;12(9): [PMID: 37174295]
  34. Microorganisms. 2022 Jul 05;10(7): [PMID: 35889071]
  35. Compr Rev Food Sci Food Saf. 2022 Mar;21(2):1868-1912 [PMID: 35194932]
  36. Food Chem. 2022 Dec 15;397:133756 [PMID: 35901614]
  37. Food Chem. 2023 Dec 1;428:136774 [PMID: 37433255]
  38. Int J Biol Macromol. 2023 Jul 1;242(Pt 4):125186 [PMID: 37268073]
  39. Nanomaterials (Basel). 2023 Dec 04;13(23): [PMID: 38063770]
  40. Analyst. 2019 Jan 14;144(2):396-411 [PMID: 30468217]
  41. Front Cell Infect Microbiol. 2022 Jul 19;12:900848 [PMID: 35928205]
  42. Microbiol Spectr. 2020 Jan;8(1): [PMID: 31950894]
  43. Talanta. 2016;149:217-224 [PMID: 26717834]
  44. Nanoscale. 2023 Aug 10;15(31):12818-12839 [PMID: 37496423]
  45. Talanta. 2013 Sep 30;114:261-7 [PMID: 23953469]
  46. Microbiol Spectr. 2020 Mar;8(2): [PMID: 32220263]
  47. Microorganisms. 2023 Apr 24;11(5): [PMID: 37317085]
  48. J Immunoassay Immunochem. 2022 Nov 2;43(6):579-604 [PMID: 36106387]
  49. Anal Chim Acta. 2023 Oct 2;1276:341618 [PMID: 37573108]
  50. Molecules. 2022 Oct 05;27(19): [PMID: 36235132]
  51. Int J Food Sci. 2021 Aug 24;2021:9924667 [PMID: 34485507]
  52. Micromachines (Basel). 2023 Jan 28;14(2): [PMID: 36838034]
  53. Biosensors (Basel). 2023 Jun 14;13(6): [PMID: 37367017]

Grants

  1. 23-46-10011/Russain Science Foundation

Word Cloud

Created with Highcharts 10.0.0ICApathogensdetectionassayfoodbornedevelopedtesthigh10immunochromatographicanalysistwostripsspecificantibodiesPrussianbluePBNPsnanozymeLODs2×lessbacteriamilk±multiplexrelevantbacterialmaycauseseriousintoxicationsinfectiousdiseaseshumansstudysensitivesimultaneouscontainingzonesmonoclonalMAblipopolysaccharidesonecontrolzonesecondarydesigneddouble-assayconditionsoptimizedensureanalyticalparametersnanoparticlesusedlabelsconjugatedMAbsperformsandwichformatPeroxidase-mimicpropertiesallowedcatalyticamplificationcolorimetricsignalenhancingsensitivitylimitscells7cells/mLrespectively100-foldachievedduebasedtraditionalgoldlabeldoubleapprobatedcowsamplesprocessedsimpledilutionbufferrecoveries863981185%correlatedwellestimatedenzyme-linkedimmunosorbentreferencemethodproposedapproachcharacterizedspecificity:cross-reactivitystrainsobservedsatisfiesrequirementsrapidtests:fullcyclesampleacquisitionresultassessmenthalfhourapplicationpotentialPrussian-Blue-Nanozyme-EnhancedSimultaneousImmunochromatographicControlTwoRelevantBacterialPathogensMilkListeria monocytogenesSalmonella typhimuriumfoodsafety

Similar Articles

Cited By