BACKGROUNDS AND PURPOSE: Post-COVID syndrome is characterized by persistent symptoms, including fatigue and cognitive impairment. These symptoms may be experienced by up to 80% of patients. We aimed to identify possible patterns of brain activation underlying post-COVID fatigue. METHODS: The study used functional MRI (Siemens MAGNETOM Prisma 3T scanner with a specially created protocol) of the brain in 30 patients with post-COVID fatigue syndrome and 20 healthy volunteers. Task functional MRI (fMRI) was performed using a cognitive paradigm (modified Stroop test). Eligible patients included adults aged 18-50 years with a >12 weeks before enrolment (less than 12 months) prior history of documented COVID-19 with symptoms of fatigue not attributable to any other cause, and with MFI-20 score > 30 and MoCA at first visit. Healthy control participants had no prior history of COVID-19 and negative tests for severe acute coronavirus respiratory syndrome with MFI-20 score < 30 and MoCA at first visit. Task fMRI data were processed using the SPM12 software package based on MATLAB R2022a. RESULTS: Cognitive task fMRI analysis showed significantly higher activation in the post-COVID group versus healthy volunteers' group. Between-group analysis showed significant activation differences. Using a threshold of T > 3 we identified eight clusters of statistically significant activation: supramarginal gyri, posterior cingulate cortex, opercular parts of precentral gyri and cerebellum posterior lobe bilaterally. CONCLUSIONS: Post-COVID fatigue syndrome associated with subjective cognitive impairment could show changes in brain functional activity in the areas connected with information processing speed and quality.
The study was supported by Ministry of Science and Higher Education of the Russian Federation within the framework of foundation of new laboratories (Laboratory of Neuropharmacological fMRI, Research Center of Neurology, project No. 1023102700108-5)./Research Center of Neurology