HIV deathrate prediction by Gaidai multivariate risks assessment method.

Oleg Gaidai
Author Information
  1. Oleg Gaidai: Department of Mechanics and Mathematics, Ivan Franko Lviv State University, Lviv, Ukraine. ORCID

Abstract

OBJECTIVES: HIV is a contagious disease with reportedly high transmissibility, being spread worldwide, with certain mortality, allegedly presenting a burden to public health worldwide. The main objective of this study was to determine excessive HIV death risks at any time within any region or country of interest.
STUDY DESIGN: Current study presents a novel multivariate public health system bio-risk assessment approach that is particularly applicable to environmental multi-regional, biological, and public health systems, being observed over a representative period of time, yielding reliable long-term HIV deathrate assessment. Hence, the development of a new bio-statistical approach, that is, population-based, multicenter, and medical survey-based. The expansion of extreme value statistics from the univariate to the bivariate situation meets with numerous challenges. Firstly, the univariate extreme value types theorem cannot be directly extended to the bivariate (2D) case, - not to mention challenges with system dimensionality higher than 2D.
METHODS: Existing bio-statistical methods that process spatiotemporal clinical observations of multinational bio-processes often do not have the advantage of efficiently dealing with high regional dimensionalities and complex nonlinear inter-correlations between different national raw datasets. Hence, this study advocates the direct application of the novel bio-statistical Gaidai method to a raw unfiltered clinical data set.
RESULTS: This investigation described the successful application of a novel bio-risk assessment approach, yielding reliable long-term HIV mortality risk assessments.
CONCLUSIONS: The suggested risk assessment methodology may be utilized in various public bio and public health clinical applications based on available raw patient survey datasets.

Keywords

References

  1. Clin Infect Dis. 2006 Sep 15;43(6):770-6 [PMID: 16912954]
  2. AIDS. 2006 May 12;20(8):1181-9 [PMID: 16691070]
  3. Sci Rep. 2023 Mar 22;13(1):4695 [PMID: 36949113]
  4. Accid Anal Prev. 2014 Jan;62:32-41 [PMID: 24129319]
  5. Stat Med. 2020 Sep 30;39(22):2962-2979 [PMID: 32678481]
  6. Sci Rep. 2023 Mar 7;13(1):3817 [PMID: 36882439]
  7. Accid Anal Prev. 2006 Jul;38(4):811-22 [PMID: 16546103]
  8. Curr Probl Cardiol. 2023 May;48(5):101622 [PMID: 36724816]
  9. F1000Res. 2023 Nov 21;11:1282 [PMID: 38116326]
  10. Sci Rep. 2023 Jan 6;13(1):303 [PMID: 36609490]
  11. Heliyon. 2023 Apr 05;9(4):e15189 [PMID: 37101618]
  12. Sci Rep. 2023 Jan 20;13(1):1119 [PMID: 36670233]
  13. Bioinform Biol Insights. 2023 Apr 11;17:11779322231161939 [PMID: 37065993]
  14. BMC Psychiatry. 2023 Sep 22;23(1):691 [PMID: 37736716]
  15. Micromachines (Basel). 2023 Jan 20;14(2): [PMID: 36837974]
  16. Sci Rep. 2023 Sep 28;13(1):16312 [PMID: 37770505]
  17. BMC Infect Dis. 2008 Apr 22;8:52 [PMID: 18430196]
  18. Math Popul Stud. 1994;4(4):259-81 [PMID: 12318734]
  19. Pol Arch Med Wewn. 2008 Oct;118(10):548-54 [PMID: 19112815]
  20. Genetics. 2007 Aug;176(4):2441-9 [PMID: 17565958]
  21. Cancer Innov. 2023 Feb 09;2(2):140-147 [PMID: 38090058]
  22. JAMA. 2006 Aug 16;296(7):782-93 [PMID: 16905784]
  23. Anal Sci Adv. 2024 Aug 27;5(7-8):e2400027 [PMID: 39221000]
  24. Digit Health. 2023 Mar 14;9:20552076231162984 [PMID: 36937694]
  25. Theor Popul Biol. 2018 Jul;122:88-96 [PMID: 28709927]
  26. Lifetime Data Anal. 2018 Apr;24(2):355-383 [PMID: 28536818]
  27. Trop Med Int Health. 2009 Jan;14(1):36-43 [PMID: 19017309]
  28. Sci Rep. 2022 Dec 7;12(1):21182 [PMID: 36476650]
  29. Immun Inflamm Dis. 2024 Oct;12(10):e70040 [PMID: 39412428]
  30. Curr Probl Cardiol. 2024 Mar;49(3):102391 [PMID: 38244882]
  31. Biosystems. 2024 Jan;235:105073 [PMID: 37967809]
  32. Heliyon. 2023 Feb 06;9(2):e13533 [PMID: 36825173]

MeSH Term

Humans
HIV Infections
Risk Assessment
Public Health

Word Cloud

Created with Highcharts 10.0.0HIVpublicassessmenthealthstudynovelapproachbio-statisticalclinicalrawhighworldwidemortalityriskstimemultivariatesystembio-riskyieldingreliablelong-termdeathrateHenceextremevalueunivariatebivariatechallenges2DdatasetsapplicationGaidaimethodriskOBJECTIVES:contagiousdiseasereportedlytransmissibilityspreadcertainallegedlypresentingburdenmainobjectivedetermineexcessivedeathwithinregioncountryinterestSTUDYDESIGN:Currentpresentsparticularlyapplicableenvironmentalmulti-regionalbiologicalsystemsobservedrepresentativeperioddevelopmentnewpopulation-basedmulticentermedicalsurvey-basedexpansionstatisticssituationmeetsnumerousFirstlytypestheoremdirectlyextendedcase-mentiondimensionalityhigherMETHODS:Existingmethodsprocessspatiotemporalobservationsmultinationalbio-processesoftenadvantageefficientlydealingregionaldimensionalitiescomplexnonlinearinter-correlationsdifferentnationaladvocatesdirectunfiltereddatasetRESULTS:investigationdescribedsuccessfulassessmentsCONCLUSIONS:suggestedmethodologymayutilizedvariousbioapplicationsbasedavailablepatientsurveypredictionAIAIDSedidemicoutbreakmathematicalbiologypublic���health

Similar Articles

Cited By