Associations between environmental factors and running performance: An observational study of the Berlin Marathon.

Katja Weiss, David Valero, Elias Villiger, Volker Scheer, Mabliny Thuany, Felipe J Aidar, Raphael Fabr��cio de Souza, Ivan Cuk, Pantelis T Nikolaidis, Thomas Rosemann, Beat Knechtle
Author Information
  1. Katja Weiss: Institute of Primary Care, University of Zurich, Zurich, Switzerland. ORCID
  2. David Valero: Ultra Sports Science Foundation, Pierre-Benite, France.
  3. Elias Villiger: Institute of Primary Care, University of Zurich, Zurich, Switzerland.
  4. Volker Scheer: Ultra Sports Science Foundation, Pierre-Benite, France.
  5. Mabliny Thuany: Department of Physical Education, State University of Para, Par��, Brazil.
  6. Felipe J Aidar: Group of Studies and Research of Performance, Sport, Health and Paralympic Sports-GEPEPS, The Federal University of Sergipe-UFS, S��o Cristov��o, Sergipe, Brazil. ORCID
  7. Raphael Fabr��cio de Souza: Group of Studies and Research of Performance, Sport, Health and Paralympic Sports-GEPEPS, The Federal University of Sergipe-UFS, S��o Cristov��o, Sergipe, Brazil.
  8. Ivan Cuk: Faculty of Sport and Physical Education, University of Belgrade, Belgrade, Serbia.
  9. Pantelis T Nikolaidis: School of Health and Caring Sciences, University of West Attica, Athens, Greece.
  10. Thomas Rosemann: Institute of Primary Care, University of Zurich, Zurich, Switzerland. ORCID
  11. Beat Knechtle: Institute of Primary Care, University of Zurich, Zurich, Switzerland. ORCID

Abstract

Extensive research has delved into the impact of environmental circumstances on the pacing and performance of professional marathon runners. However, the effects of environmental conditions on the pacing strategies employed by marathon participants in general remain relatively unexplored. This study aimed to examine the potential associations between various environmental factors, encompassing temperature, barometric pressure, humidity, precipitation, sunshine, cloud cover, wind speed, and dew point, and the pacing behavior of men and women. The retrospective analysis involved a comprehensive dataset comprising records from a total of 668,509 runners (520,521 men and 147,988 women) who participated in the 'Berlin Marathon' events between the years 1999 and 2019. Through correlations, Ordinary Least Squares (OLS) regression, and machine learning (ML) methods, we investigated the relationships between adjusted average temperature values, barometric pressure, humidity, precipitation, sunshine, cloud cover, wind speed, and dew point, and their impact on race times and paces. This analysis was conducted across distinct performance groups, segmented by 30-minute intervals, for race durations between 2 hours and 30 minutes to 6 hours. The results revealed a noteworthy negative correlation between rising temperatures and declining humidity throughout the day and the running speed of marathon participants in the 'Berlin Marathon.' This effect was more pronounced among men than women. The average pace for the full race showed positive correlations with temperature and minutes of sunshine for both men and women. However, it is important to note that the predictive capacity of our model, utilizing weather variables as predictors, was limited, accounting for only 10% of the variance in race pace. The susceptibility to temperature and humidity fluctuations exhibited a discernible increase as the marathon progressed. While weather conditions exerted discernible influences on running speeds and outcomes, they did not emerge as significant predictors of pacing.

References

  1. Eur J Appl Physiol. 2020 Apr;120(4):719-752 [PMID: 32124007]
  2. Pflugers Arch. 2000 Dec;441(2-3):359-67 [PMID: 11211124]
  3. J Strength Cond Res. 2014 Jun;28(6):1673-8 [PMID: 24149746]
  4. Sports Med. 2007;37(4-5):400-3 [PMID: 17465619]
  5. Evol Psychol. 2014 Oct 06;12(5):848-77 [PMID: 25300067]
  6. Environ Health Perspect. 2023 May;131(5):55001 [PMID: 37255302]
  7. J Strength Cond Res. 2016 Nov;30(11):2991-2997 [PMID: 26950352]
  8. Int J Environ Res Public Health. 2021 Aug 10;18(16): [PMID: 34444173]
  9. Scand J Med Sci Sports. 2021 Mar;31(3):521-528 [PMID: 33179319]
  10. Sports Med. 2007;37(8):669-82 [PMID: 17645370]
  11. Int J Environ Res Public Health. 2019 Feb 20;16(4): [PMID: 30791523]
  12. J Appl Physiol Respir Environ Exerc Physiol. 1980 Apr;48(4):702-9 [PMID: 7380693]
  13. Auton Neurosci. 2016 Apr;196:52-62 [PMID: 26905458]
  14. Med Sci Sports Exerc. 2007 Mar;39(3):487-93 [PMID: 17473775]
  15. Eur J Sport Sci. 2018 Jul;18(6):781-786 [PMID: 29557279]
  16. PLoS One. 2012;7(9):e43579 [PMID: 23049738]
  17. Int J Environ Res Public Health. 2020 Feb 13;17(4): [PMID: 32069781]
  18. Front Psychol. 2020 Jul 03;11:1438 [PMID: 32719639]
  19. Res Sports Med. 2018 Jan-Mar;26(1):86-99 [PMID: 29064284]
  20. Eur J Appl Physiol. 2012 Jun;112(6):2313-21 [PMID: 22012542]
  21. J Appl Physiol (1985). 2024 Jun 1;136(6):1478-1487 [PMID: 38695357]
  22. Int J Biometeorol. 2010 May;54(3):297-306 [PMID: 19937453]
  23. Front Sports Act Living. 2021 Sep 28;3:735220 [PMID: 34651125]
  24. Eur J Sport Sci. 2020 Aug;20(7):880-886 [PMID: 31671022]
  25. Sports Med. 2007;37(4-5):332-6 [PMID: 17465601]
  26. Sci Rep. 2022 Jun 24;12(1):10780 [PMID: 35750788]
  27. J Strength Cond Res. 2014 Apr;28(4):892-901 [PMID: 24077377]
  28. Front Physiol. 2021 Jul 07;12:649898 [PMID: 34305629]
  29. PLoS One. 2012;7(5):e37407 [PMID: 22649525]
  30. J Appl Physiol. 1963 Jan;18:51-6 [PMID: 13930723]
  31. Eur J Sport Sci. 2019 Nov;19(10):1297-1302 [PMID: 30922191]
  32. Front Physiol. 2021 May 13;12:654544 [PMID: 34054573]
  33. Med Sci Sports Exerc. 2008 Sep;40(9):1675-80 [PMID: 18685522]
  34. Med Sci Sports Exerc. 2015 Mar;47(3):607-16 [PMID: 24983344]
  35. Front Sports Act Living. 2019 Nov 08;1:54 [PMID: 33344977]
  36. Med Sci Sports Exerc. 2007 Nov;39(11):2029-35 [PMID: 17986912]
  37. Eur J Transl Myol. 2021 Nov 10;31(4): [PMID: 34761670]
  38. J Strength Cond Res. 2011 Feb;25(2):386-91 [PMID: 20224445]
  39. Res Sports Med. 2020 Jan-Mar;28(1):121-137 [PMID: 30889965]
  40. Eur J Appl Physiol. 2016 Jul;116(7):1411-9 [PMID: 27231012]
  41. Sports Med. 2018 Mar;48(Suppl 1):17-29 [PMID: 29368184]
  42. Life Sci. 2015 Nov 15;141:74-80 [PMID: 26367064]
  43. Int J Sports Physiol Perform. 2016 Jul;11(7):635-42 [PMID: 26561864]

MeSH Term

Humans
Male
Female
Marathon Running
Athletic Performance
Retrospective Studies
Adult
Temperature
Humidity
Weather
Berlin
Running
Middle Aged
Environment

Word Cloud

Created with Highcharts 10.0.0environmentalpacingmarathontemperaturehumiditymenwomenracesunshinespeedrunningimpactperformancerunnersHoweverconditionsparticipantsstudyfactorsbarometricpressureprecipitationcloudcoverwinddewpointanalysis'BerlincorrelationsaveragehoursminutesMarathonpaceweatherpredictorsdiscernibleExtensiveresearchdelvedcircumstancesprofessionaleffectsstrategiesemployedgeneralremainrelativelyunexploredaimedexaminepotentialassociationsvariousencompassingbehaviorretrospectiveinvolvedcomprehensivedatasetcomprisingrecordstotal668509520521147988participatedMarathon'eventsyears19992019OrdinaryLeastSquaresOLSregressionmachinelearningMLmethodsinvestigatedrelationshipsadjustedvaluestimespacesconductedacrossdistinctgroupssegmented30-minuteintervalsdurations2306resultsrevealednoteworthynegativecorrelationrisingtemperaturesdecliningthroughoutday'effectpronouncedamongfullshowedpositiveimportantnotepredictivecapacitymodelutilizingvariableslimitedaccounting10%variancesusceptibilityfluctuationsexhibitedincreaseprogressedexertedinfluencesspeedsoutcomesemergesignificantAssociationsperformance:observationalBerlin

Similar Articles

Cited By