A self-adjuvanted VLPs-based Covid-19 vaccine proven versatile, safe, and highly protective.

Larissa Vuitika, Nelson C��rtes, Vanessa B Malaquias, Jaqueline D Q Silva, Aline Lira, Wasim A Prates-Syed, Lena F Schimke, Daniela Luz, Ricardo Dur��es-Carvalho, Andrea Balan, Niels O S C��mara, Otavio Cabral-Marques, Jos�� E Krieger, Mario H Hirata, Gustavo Cabral-Miranda
Author Information
  1. Larissa Vuitika: Department of Immunology, Institute of Biomedical Sciences, University of S��o Paulo, S��o Paulo, Brazil.
  2. Nelson C��rtes: Department of Immunology, Institute of Biomedical Sciences, University of S��o Paulo, S��o Paulo, Brazil.
  3. Vanessa B Malaquias: Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, S��o Paulo, Brazil.
  4. Jaqueline D Q Silva: Department of Immunology, Institute of Biomedical Sciences, University of S��o Paulo, S��o Paulo, Brazil.
  5. Aline Lira: Department of Immunology, Institute of Biomedical Sciences, University of S��o Paulo, S��o Paulo, Brazil.
  6. Wasim A Prates-Syed: Department of Immunology, Institute of Biomedical Sciences, University of S��o Paulo, S��o Paulo, Brazil.
  7. Lena F Schimke: Department of Immunology, Institute of Biomedical Sciences, University of S��o Paulo, S��o Paulo, Brazil.
  8. Daniela Luz: Laboratory of Bacteriology, Butantan Institute, S��o Paulo, Brazil.
  9. Ricardo Dur��es-Carvalho: S��o Paulo School of Medicine, Department of Microbiology, Immunology and Parasitology, Federal University of S��o Paulo (UNIFESP), S��o Paulo, SP, Brazil.
  10. Andrea Balan: Applied Structural Biology Laboratory, Institute of Biomedical Sciences, University of S��o Paulo, S��o Paulo, 05508-000, Brazil.
  11. Niels O S C��mara: Department of Immunology, Institute of Biomedical Sciences, University of S��o Paulo, S��o Paulo, Brazil.
  12. Otavio Cabral-Marques: Department of Immunology, Institute of Biomedical Sciences, University of S��o Paulo, S��o Paulo, Brazil.
  13. Jos�� E Krieger: Heart Institute, Clinical Hospital, Faculty of Medicine, Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of S��o Paulo, S��o Paulo, Brazil.
  14. Mario H Hirata: Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, S��o Paulo, Brazil.
  15. Gustavo Cabral-Miranda: Department of Immunology, Institute of Biomedical Sciences, University of S��o Paulo, S��o Paulo, Brazil. gcabral.miranda@usp.br.

Abstract

Vaccination has played a critical role in mitigating Covid-19. Despite the availability of licensed vaccines, there remains a pressing need for improved vaccine platforms that provide high protection, safety, and versatility, while also reducing vaccine costs. In response to these challenges, our aim is to create a self-adjuvanted vaccine against SARS-CoV-2, utilizing Virus-Like Particles (VLPs) as the foundation. To achieve this, we produced bacteriophage (Q��) VLPs in a prokaryotic system and purified them using a rapid and cost-effective strategy involving organic solvents. This method aims to solubilize lipids and components of the cell membrane to eliminate endotoxins present in bacterial samples. For vaccine formulation, Receptor Binding Domain (RBD) antigens were conjugated using chemical crosslinkers, a process compatible with Good Manufacturing Practice (GMP) standards. Transmission Electron Microscopy (TEM) confirmed the expected folding and spatial configuration of the Q��VLPs vaccine. Additionally, vaccine formulation assessment involved SDS-PAGE stained with Coomassie Brilliant Blue, Western blotting, and stereomicroscopic experiments. In vitro and in vivo evaluations of the vaccine formulation were conducted to assess its capacity to induce a protective immune response without causing side effects. Vaccine doses of 20 ��g and 50 ��g stimulated the production of neutralizing antibodies. In in vivo testing, the group of animals vaccinated with 50 ��g of vaccine formulation provided complete protection against virus infection, maintaining stable body weight without showing signs of disease. In conclusion, the Q��VLPs-RBD vaccine has proven to be effective and safe, eliminating the necessity for supplementary adjuvants and offering a financially feasible approach. Moreover, this vaccine platform demonstrates flexibility in targeting Variants of Concern (VOCs) via established conjugation protocols with VLPs.

Keywords

References

  1. Curr Protoc Immunol. 2020 Dec;131(1):e116 [PMID: 33215858]
  2. Nat Commun. 2020 Jun 5;11(1):2841 [PMID: 32503989]
  3. J Hypertens. 2007 Jan;25(1):63-72 [PMID: 17143175]
  4. PLoS One. 2017 Aug 10;12(8):e0181844 [PMID: 28797124]
  5. Vaccines (Basel). 2020 Mar 20;8(1): [PMID: 32244935]
  6. Science. 2021 Dec 24;374(6575):1557-1558 [PMID: 34941409]
  7. Rev Med Virol. 2024 Jan;34(1):e2498 [PMID: 38116958]
  8. Biochim Biophys Acta Gen Subj. 2021 Jun;1865(6):129893 [PMID: 33731300]
  9. Front Immunol. 2020 Jun 09;11:1100 [PMID: 32582186]
  10. Vaccines (Basel). 2022 Aug 25;10(9): [PMID: 36146463]
  11. EClinicalMedicine. 2022 Apr;46:101383 [PMID: 35434578]
  12. Nat Rev Drug Discov. 2021 Jun;20(6):454-475 [PMID: 33824489]
  13. Lancet Microbe. 2023 Mar;4(3):e140-e148 [PMID: 36681093]
  14. J Control Release. 2017 Apr 10;251:92-100 [PMID: 28257987]
  15. Curr Opin Virol. 2016 Jun;18:44-9 [PMID: 27039982]
  16. Curr Opin Biotechnol. 2022 Feb;73:329-336 [PMID: 34715546]
  17. Arthritis Res. 2002;4(1):54-8 [PMID: 11879537]
  18. Lancet Infect Dis. 2021 Aug;21(8):1107-1119 [PMID: 33773111]
  19. J Med Virol. 2021 Mar;93(3):1343-1350 [PMID: 33085084]
  20. Signal Transduct Target Ther. 2023 Apr 7;8(1):149 [PMID: 37029123]
  21. Cell. 2020 Nov 25;183(5):1367-1382.e17 [PMID: 33160446]
  22. Immunol Rev. 2020 Jul;296(1):169-190 [PMID: 32594569]
  23. Immunol Cell Biol. 2016 Nov;94(10):949-954 [PMID: 27502143]
  24. Sci Immunol. 2020 Jun 11;5(48): [PMID: 32527802]
  25. NPJ Vaccines. 2017 Feb 9;2:3 [PMID: 29263864]
  26. NPJ Vaccines. 2021 Jan 8;6(1):5 [PMID: 33420068]
  27. Vaccines (Basel). 2021 Apr 29;9(5): [PMID: 33946736]
  28. Front Microbiol. 2022 Jan 03;12:790121 [PMID: 35046918]
  29. Biomacromolecules. 2021 Aug 9;22(8):3332-3341 [PMID: 34251176]
  30. Diseases. 2018 Nov 21;6(4): [PMID: 30469323]
  31. Nat Rev Mater. 2021;6(12):1078-1094 [PMID: 34394960]
  32. Virol Sin. 2018 Jun;33(3):213-226 [PMID: 29774519]
  33. Vaccines (Basel). 2017 Sep 27;5(4): [PMID: 28953265]
  34. Front Immunol. 2021 Feb 18;12:631226 [PMID: 33679778]
  35. Nat Commun. 2021 Jan 12;12(1):324 [PMID: 33436573]
  36. ACS Nano. 2023 Dec 26;17(24):24514-24538 [PMID: 38055649]
  37. Viruses. 2020 Jul 30;12(8): [PMID: 32751441]
  38. PLoS One. 2008 Jul 16;3(7):e2685 [PMID: 18628832]
  39. N Biotechnol. 2022 Dec 25;72:11-21 [PMID: 35953030]
  40. J Immunol. 2017 May 15;198(10):3846-3856 [PMID: 28416599]
  41. Natl Sci Rev. 2024 Jan 23;11(4):nwae032 [PMID: 38440215]
  42. Vaccines (Basel). 2017 May 02;5(2): [PMID: 28468322]
  43. Sci Transl Med. 2021 Feb 10;13(580): [PMID: 33568518]
  44. Ann Med Surg (Lond). 2023 Apr 26;85(6):2291-2297 [PMID: 37363608]
  45. EBioMedicine. 2022 Sep;83:104217 [PMID: 35970020]
  46. Indian J Med Res. 2022 Jan;155(1):91-104 [PMID: 35859436]
  47. Nature. 2022 May;605(7911):640-652 [PMID: 35361968]
  48. J Pharm Sci. 2011 Jan;100(1):34-7 [PMID: 20575063]
  49. Semin Immunol. 2017 Dec;34:123-132 [PMID: 28887001]
  50. Vaccines (Basel). 2022 Dec 25;11(1): [PMID: 36679892]
  51. Int J Pharm. 2021 May 15;601:120586 [PMID: 33839230]
  52. Science. 2022 Jan 21;375(6578):eabl6251 [PMID: 34855508]
  53. Eur J Immunol. 2005 Jul;35(7):2031-40 [PMID: 15971275]
  54. Biochemistry. 2009 Dec 1;48(47):11155-7 [PMID: 19848414]
  55. Front Immunol. 2023 Feb 09;14:1123805 [PMID: 36845125]
  56. Virology. 2004 Sep 1;326(2):280-7 [PMID: 15302213]
  57. Diseases. 2023 Apr 20;11(2): [PMID: 37092446]
  58. Mol Ther. 2020 Mar 4;28(3):709-722 [PMID: 31968213]
  59. Front Immunol. 2023 Nov 02;14:1238649 [PMID: 38022657]
  60. Theranostics. 2024 Jan 1;14(2):738-760 [PMID: 38169577]
  61. Adv Drug Deliv Rev. 2021 Mar;170:71-82 [PMID: 33421475]
  62. Microb Pathog. 2021 Apr;153:104799 [PMID: 33609650]
  63. J Nanobiotechnology. 2021 Feb 25;19(1):59 [PMID: 33632278]
  64. PLoS One. 2009;4(3):e4667 [PMID: 19252744]
  65. Nat Rev Microbiol. 2023 Jun;21(6):361-379 [PMID: 37020110]
  66. Vaccines (Basel). 2019 Jun 04;7(2): [PMID: 31167472]
  67. Viruses. 2022 Jan 24;14(2): [PMID: 35215818]
  68. ACS Chem Biol. 2022 Nov 18;17(11):3047-3058 [PMID: 35142488]
  69. Vaccines (Basel). 2020 Mar 02;8(1): [PMID: 32131431]
  70. Vaccines (Basel). 2021 Nov 30;9(12): [PMID: 34960155]
  71. ACS Chem Biol. 2021 Jul 16;16(7):1223-1233 [PMID: 34219448]
  72. Nat Rev Mol Cell Biol. 2022 Jan;23(1):3-20 [PMID: 34611326]
  73. Science. 2021 Dec 24;374(6575):1626-1632 [PMID: 34735219]
  74. Sci Rep. 2018 Feb 8;8(1):2681 [PMID: 29422616]
  75. Clin Chest Med. 2023 Jun;44(2):435-449 [PMID: 37085231]
  76. N Engl J Med. 2022 Jun 2;386(22):2097-2111 [PMID: 35507481]
  77. Nat Med. 2022 Nov;28(11):2273-2287 [PMID: 36357682]
  78. Front Mol Biosci. 2021 Apr 22;8:671633 [PMID: 33968996]

Grants

  1. 2020/09404-0 (Post-doc Scholarship)/Funda����o de Amparo �� Pesquisa do Estado de S��o Paulo
  2. AL: 2021/03102-5 (PhD Scholarship/Funda����o de Amparo �� Pesquisa do Estado de S��o Paulo
  3. NC 2021/03508-1/Funda����o de Amparo �� Pesquisa do Estado de S��o Paulo
  4. WAPS 2021/08468-8 (PhD Scholarship)/Funda����o de Amparo �� Pesquisa do Estado de S��o Paulo
  5. GC-M: 2019/14526-0, 2020/04667-3/Funda����o de Amparo �� Pesquisa do Estado de S��o Paulo

MeSH Term

Vaccines, Virus-Like Particle
COVID-19 Vaccines
Animals
COVID-19
SARS-CoV-2
Mice
Humans
Antibodies, Neutralizing
Antibodies, Viral
Spike Glycoprotein, Coronavirus
Female
Adjuvants, Immunologic
Adjuvants, Vaccine
Vaccination
Mice, Inbred BALB C

Chemicals

Vaccines, Virus-Like Particle
COVID-19 Vaccines
Antibodies, Neutralizing
Antibodies, Viral
Spike Glycoprotein, Coronavirus
Adjuvants, Immunologic
Adjuvants, Vaccine
spike protein, SARS-CoV-2

Word Cloud

Created with Highcharts 10.0.0vaccineVLPsformulationCOVID-19protectionresponseself-adjuvantedSARS-CoV-2usingvivoprotectivewithoutVaccine50 ��gprovensafeplatformVaccinationplayedcriticalrolemitigatingDespiteavailabilitylicensedvaccinesremainspressingneedimprovedplatformsprovidehighsafetyversatilityalsoreducingcostschallengesaimcreateutilizingVirus-LikeParticlesfoundationachieveproducedbacteriophageQ��prokaryoticsystempurifiedrapidcost-effectivestrategyinvolvingorganicsolventsmethodaimssolubilizelipidscomponentscellmembraneeliminateendotoxinspresentbacterialsamplesReceptorBindingDomainRBDantigensconjugatedchemicalcrosslinkersprocesscompatibleGoodManufacturingPracticeGMPstandardsTransmissionElectronMicroscopyTEMconfirmedexpectedfoldingspatialconfigurationQ��VLPsAdditionallyassessmentinvolvedSDS-PAGEstainedCoomassieBrilliantBlueWesternblottingstereomicroscopicexperimentsvitroevaluationsconductedassesscapacityinduceimmunecausingsideeffectsdoses20 ��gstimulatedproductionneutralizingantibodiestestinggroupanimalsvaccinatedprovidedcompletevirusinfectionmaintainingstablebodyweightshowingsignsdiseaseconclusionQ��VLPs-RBDeffectiveeliminatingnecessitysupplementaryadjuvantsofferingfinanciallyfeasibleapproachMoreoverdemonstratesflexibilitytargetingVariantsConcernVOCsviaestablishedconjugationprotocolsVLPs-basedCovid-19versatilehighly

Similar Articles

Cited By

No available data.