Dual-plasmid interactions stimulate the accumulation of valencene in .

Chaoyi Zhu, Shengliang Cai, Peiling Liu, Dongying Chen, Jingtao Zhou, Min Zhuo, Shuang Li
Author Information
  1. Chaoyi Zhu: School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
  2. Shengliang Cai: School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
  3. Peiling Liu: School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
  4. Dongying Chen: School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
  5. Jingtao Zhou: School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
  6. Min Zhuo: School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
  7. Shuang Li: School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.

Abstract

Plasmids are one of the most commonly used basic tools in the construction of microbial cell factories, the use of which individually or in pairs play an important role in the expression of exogenous gene modules. However, little attention has been paid to the interactions of plasmid-plasmid and plasmid-host in the widespread use of the double plasmid system. In this study, we demonstrated that dual-plasmid interactions facilitated to cell growth and product accumulation in . The strain containing both the expression plasmid pEV (a plasmid carrying the gene encoding valencene synthase) and the assistant plasmid pI (an empty plasmid expressing no extra gene) showed a significant improvement in relative growth rate, biomass and valencene production compared to the strain containing only the pEV plasmid. The transcriptional level analysis revealed an up-regulated expression of specific gene on the expression plasmid pEV stimulated by the assistant plasmid pI in the dual-plasmid interactions. Further investigations demonstrated the essential roles of the promoters of the expression plasmid pEV and the CEN/ARS element of the assistant plasmid pI in the dual-plasmid interactions. Combined with the results of predicted nucleosome occupancy, a response model of interaction based on the key T(n)C and CEN/ARS element was established. Moreover, the transformation order of the two plasmids significantly affected the response effect, implying the dominance of plasmid pI in the dual-plasmid interactions. Our finding first demonstrated that dual plasmids regulate the gene expression through spatial interactions at DNA sequences level, which provides a new perspective for the development of microbial cell factories in future.

Keywords

References

  1. Protein Expr Purif. 2008 Jul;60(1):53-7 [PMID: 18434195]
  2. BMC Bioinformatics. 2010 Jun 24;11:346 [PMID: 20576140]
  3. Cell. 2007 Mar 23;128(6):1105-18 [PMID: 17382880]
  4. Biotechnol Lett. 2007 Mar;29(3):431-7 [PMID: 17151958]
  5. Nat Rev Microbiol. 2015 Jan;13(1):42-51 [PMID: 25435309]
  6. ACS Synth Biol. 2017 Aug 18;6(8):1545-1553 [PMID: 28391682]
  7. J Bacteriol. 1995 Nov;177(22):6684-7 [PMID: 7592453]
  8. J Microbiol Methods. 2017 Sep;140:5-11 [PMID: 28610973]
  9. Plasmid. 2017 Sep;93:6-16 [PMID: 28842132]
  10. Nucleic Acids Res. 2000 Nov 1;28(21):4083-9 [PMID: 11058103]
  11. Biotechnol Adv. 1994;12(2):279-324 [PMID: 14545895]
  12. FEMS Yeast Res. 2013 Feb;13(1):107-16 [PMID: 23107142]
  13. Methods Enzymol. 1991;194:428-53 [PMID: 2005802]
  14. Can J Microbiol. 2018 May;64(5):293-304 [PMID: 29562144]
  15. Nat Genet. 2012 May 27;44(7):743-50 [PMID: 22634752]
  16. Microb Cell Fact. 2006 Nov 17;5:34 [PMID: 17112383]
  17. Microbiol Spectr. 2014 Oct;2(5): [PMID: 25541598]
  18. J Mol Biol. 2006 Aug 25;361(4):617-24 [PMID: 16860337]
  19. World J Microbiol Biotechnol. 2019 Jan 31;35(2):33 [PMID: 30706208]
  20. Microb Cell Fact. 2020 Feb 3;19(1):21 [PMID: 32013959]
  21. Yeast. 2017 May;34(5):205-221 [PMID: 28072905]
  22. Biotechnol Bioeng. 1991 Apr 5;37(8):736-45 [PMID: 18600670]
  23. EMBO J. 1995 Jun 1;14(11):2570-9 [PMID: 7781610]
  24. Cell. 2011 Aug 5;146(3):353-8 [PMID: 21802130]
  25. Science. 2007 Dec 21;318(5858):1931-4 [PMID: 18048652]
  26. Curr Opin Struct Biol. 2009 Feb;19(1):65-71 [PMID: 19208466]
  27. Yeast. 2018 Apr;35(4):331-341 [PMID: 29159981]
  28. J Agric Food Chem. 2018 Mar 14;66(10):2247-2258 [PMID: 28418659]
  29. J Agric Food Chem. 2022 Jan 26;70(3):815-825 [PMID: 35015539]

Word Cloud

Created with Highcharts 10.0.0plasmidinteractionsexpressiongenedual-plasmidpEVpIcelldemonstratedvalenceneassistantCEN/ARSelementresponsemicrobialfactoriesusegrowthaccumulationstraincontaininglevelplasmidsDual-plasmidPlasmidsonecommonlyusedbasictoolsconstructionindividuallypairsplayimportantroleexogenousmodulesHoweverlittleattentionpaidplasmid-plasmidplasmid-hostwidespreaddoublesystemstudyfacilitatedproductcarryingencodingsynthaseemptyexpressingextrashowedsignificantimprovementrelativeratebiomassproductioncomparedtranscriptionalanalysisrevealedup-regulatedspecificstimulatedinvestigationsessentialrolespromotersCombinedresultspredictednucleosomeoccupancymodelinteractionbasedkeyTnCestablishedMoreovertransformationordertwosignificantlyaffectedeffectimplyingdominancefindingfirstdualregulatespatialDNAsequencesprovidesnewperspectivedevelopmentfuturestimulateCellPolydA:dTSaccharomycescerevisiae

Similar Articles

Cited By