A lumped parameter modelling study of cerebral autoregulation in normal pressure hydrocephalus suggests the brain chooses to be ischemic.

Grant Alexander Bateman, Alexander Robert Bateman
Author Information
  1. Grant Alexander Bateman: Department of Medical Imaging, John Hunter Hospital, Locked Bag 1, Newcastle Region Mail Center, Newcastle, NSW, 2310, Australia. grant.bateman@health.nsw.gov.au. ORCID
  2. Alexander Robert Bateman: School of Mechanical Engineering, University of New South Wales, Sydney, NSW, Australia.

Abstract

Normal pressure hydrocephalus (NPH) is associated with a reduction in cerebral blood flow and an ischemic metabolic state. Ischemia should exhaust the available autoregulation in an attempt to correct the metabolic imbalance. There is evidence of some retained autoregulation reserve in NPH. The aim of this study is to model the cerebral autoregulation in NPH to discover a solution to this apparent paradox. A lumped parameter model was developed utilizing the known limits of autoregulation in man. The model was tested by predicting the cerebral blood volume changes which would be brought about by changes in resistance. NPH and the post shunt state were then modeled using the known constraints provided from the literature. The model successfully predicted the cerebral blood volume changes brought about by altering the cerebral perfusion pressure to the limit of autoregulation. The model suggests that NPH is associated with a balanced increase in resistance within the arterial and venous outflow segments. The arterial resistance decreased after modelling shunt insertion. The model suggests that the cerebral blood flow is actively limited in NPH by arteriolar constriction. This may occur to minimize the rise in ICP by reducing the apparent CSF formation rate.

Keywords

References

  1. Panminerva Med. 2017 Mar;59(1):76-89 [PMID: 27598891]
  2. Neurosurg Rev. 2022 Dec;45(6):3839-3840 [PMID: 36171506]
  3. Neuroradiology. 2003 Feb;45(2):65-70 [PMID: 12592485]
  4. Neurosurgery. 1997 Jun;40(6):1161-5; discussion 1165-7 [PMID: 9179888]
  5. Physiol Rev. 1971 Apr;51(2):273-311 [PMID: 4930496]
  6. Chin Med J (Engl). 2012 Apr;125(7):1303-9 [PMID: 22613606]
  7. Am J Physiol. 1987 Apr;252(4 Pt 2):H738-42 [PMID: 3565591]
  8. J Cereb Blood Flow Metab. 1993 Nov;13(6):1025-8 [PMID: 8408311]
  9. Folia Neuropathol. 2010;48(3):159-74 [PMID: 20925000]
  10. N Engl J Med. 1965 Jul 15;273:117-26 [PMID: 14303656]
  11. Stroke. 1973 May-Jun;4(3):390-9 [PMID: 4351497]
  12. J Neurosurg. 1968 Apr;28(4):327-40 [PMID: 5300463]
  13. Ann Biomed Eng. 1988;16(4):379-401 [PMID: 3177984]
  14. Science. 2013 Jun 28;340(6140):1529-30 [PMID: 23812703]
  15. Acta Radiol. 2003 Sep;44(5):538-46 [PMID: 14510762]
  16. Acta Neurochir (Wien). 1987;84(3-4):124-8 [PMID: 3577856]
  17. AJNR Am J Neuroradiol. 2001 Oct;22(9):1659-64 [PMID: 11673158]
  18. Neurol Med Chir (Tokyo). 2007 Jul;47(7):299-306; discussion 306 [PMID: 17652915]
  19. Fluids Barriers CNS. 2014 Dec 02;11(1):26 [PMID: 25678956]
  20. J Neurol Psychiatry. 1938 Jul;1(3):187-97 [PMID: 21610927]
  21. Neurochirurgie. 1974 Dec;20(7):623-32 [PMID: 4465740]
  22. Brain. 1986 Aug;109 ( Pt 4):613-28 [PMID: 3730808]
  23. J Cereb Blood Flow Metab. 2017 Jan;37(1):52-68 [PMID: 27780904]
  24. Mayo Clin Proc. 2002 Jun;77(6):507-8 [PMID: 12059118]
  25. Childs Nerv Syst. 1994 Jan;10(1):29-35 [PMID: 8194060]
  26. Neuroimage. 2005 Jan 1;24(1):1-11 [PMID: 15588591]
  27. Front Neurol. 2022 Feb 28;13:843883 [PMID: 35295837]
  28. Neuroimage. 2001 Sep;14(3):685-700 [PMID: 11506541]
  29. J Neurosurg. 1998 Aug;89(2):275-8 [PMID: 9688123]
  30. Neurocrit Care. 2010 Feb;12(1):117-23 [PMID: 19898968]
  31. J Trauma. 1995 Sep;39(3):463-71; discussion 471-2 [PMID: 7473910]
  32. Clin Neurol Neurosurg. 2003 Jul;105(3):193-202 [PMID: 12860514]
  33. Fluids Barriers CNS. 2014 May 23;11:11 [PMID: 24955236]
  34. Sci Rep. 2022 Jul 29;12(1):13045 [PMID: 35906407]
  35. Surg Neurol. 1984 Feb;21(2):195-203 [PMID: 6422571]
  36. Arch Neurol. 1975 Oct;32(10):657-64 [PMID: 1180726]
  37. Neurosurgery. 2002 Apr;50(4):763-71; discussion 771-3 [PMID: 11904027]
  38. Neurology. 1990 Mar;40(3 Pt 1):500-3 [PMID: 2314595]
  39. J Cereb Blood Flow Metab. 2011 Sep;31(9):1836-51 [PMID: 21731034]
  40. J Clin Invest. 1948 Jul;27(4):493-9 [PMID: 16695570]
  41. Neuroimage. 2024 Feb 15;287:120512 [PMID: 38199427]
  42. Neurosurg Rev. 2022 Apr;45(2):1157-1169 [PMID: 34687356]
  43. J Neurosurg. 2002 Dec;97(6):1271-5 [PMID: 12507122]
  44. Circ Res. 1970 Dec;27(6):1069-80 [PMID: 5494860]
  45. J Neurosurg. 2007 Dec;107(6):1205-10 [PMID: 18077958]
  46. J Cereb Blood Flow Metab. 2016 Oct;36(10):1755-1766 [PMID: 26661191]
  47. Med Biol Eng Comput. 2003 Sep;41(5):579-88 [PMID: 14572009]
  48. Physiol Rev. 2021 Oct 1;101(4):1487-1559 [PMID: 33769101]
  49. Neurology. 1977 Oct;27(10):905-10 [PMID: 561903]
  50. PLoS One. 2012;7(12):e52664 [PMID: 23300737]
  51. J Neurol Neurosurg Psychiatry. 2005 Aug;76(8):1088-93 [PMID: 16024885]
  52. Acta Neurochir (Wien). 2007;149(5):455-62; discussion 462 [PMID: 17406777]
  53. Ann Biomed Eng. 1989;17(1):13-38 [PMID: 2919811]
  54. J Neurol Neurosurg Psychiatry. 1971 Dec;34(6):687-92 [PMID: 5158784]
  55. J Neurosurg. 1997 Nov;87(5):687-93 [PMID: 9347976]
  56. J Neurosurg. 1975 Oct;43(4):385-98 [PMID: 808593]
  57. Neurosurgery. 2002 Mar;50(3):526-32; discussion 532-3 [PMID: 11841720]
  58. J Clin Med. 2023 Oct 20;12(20): [PMID: 37892782]
  59. J Neurosurg. 1974 May;40(5):603-8 [PMID: 4544731]
  60. J Neurol Neurosurg Psychiatry. 1974 Apr;37(4):392-402 [PMID: 4209160]
  61. Pediatr Neurosurg. 1992;18(3):127-33 [PMID: 1457371]
  62. Brain. 2004 May;127(Pt 5):965-72 [PMID: 15033897]
  63. J Cereb Blood Flow Metab. 2004 Jan;24(1):17-23 [PMID: 14688613]
  64. Neuroimage. 2019 Feb 15;187:17-31 [PMID: 29458187]
  65. Neurol Med Chir (Tokyo). 1989 May;29(5):382-8 [PMID: 2477737]
  66. Bioengineering (Basel). 2018 Aug 09;5(3): [PMID: 30096933]

MeSH Term

Hydrocephalus, Normal Pressure
Humans
Cerebrovascular Circulation
Homeostasis
Brain Ischemia
Brain
Intracranial Pressure

Word Cloud

Created with Highcharts 10.0.0cerebralNPHautoregulationmodelbloodpressurehydrocephalusflowchangesresistancesuggestsNormalassociatedischemicmetabolicstateIschemiastudyapparentlumpedparameterknownvolumebroughtshuntarterialmodellingCSFformationratereductionexhaustavailableattemptcorrectimbalanceevidenceretainedreserveaimdiscoversolutionparadoxdevelopedutilizinglimitsmantestedpredictingpostmodeledusingconstraintsprovidedliteraturesuccessfullypredictedalteringperfusionlimitbalancedincreasewithinvenousoutflowsegmentsdecreasedinsertionactivelylimitedarteriolarconstrictionmayoccurminimizeriseICPreducingnormalbrainchoosesAutoregulationCerebral

Similar Articles

Cited By