A millisecond coarse-grained simulation approach to decipher allosteric cannabinoid binding at the glycine receptor α1.

Alessio Bartocci, Andrea Grazzi, Nour Awad, Pierre-Jean Corringer, Paulo C T Souza, Marco Cecchini
Author Information
  1. Alessio Bartocci: Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex, 67083, France. ORCID
  2. Andrea Grazzi: Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex, 67083, France. ORCID
  3. Nour Awad: Institut Pasteur, Université de Paris, CNRS UMR3571, Channel-Receptors Unit, Paris, France.
  4. Pierre-Jean Corringer: Institut Pasteur, Université de Paris, CNRS UMR3571, Channel-Receptors Unit, Paris, France.
  5. Paulo C T Souza: Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France. ORCID
  6. Marco Cecchini: Institut de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, Strasbourg Cedex, 67083, France. mcecchini@unistra.fr. ORCID

Abstract

Glycine receptors (GlyR) are regulated by small-molecule binding at several allosteric sites. Cannabinoids like tetrahydrocannabinol (THC) and N-arachidonyl-ethanol-amide (AEA) potentiate the GlyR response but their mechanism of action is not fully established. By combining millisecond coarse-grained (CG) MD simulations powered by Martini 3 with backmapping to all-atom representations, we have characterized the cannabinoid-binding site(s) at the zebrafish GlyR-α1 active state with atomic resolution. Based on hundreds of thousand ligand-binding events, we find that cannabinoids bind to the transmembrane domain of the receptor at both intrasubunit and intersubunit sites. For THC, the intrasubunit binding mode predicted in simulation is in excellent agreement with recent cryo-EM structures, while intersubunit binding recapitulates in full previous mutagenesis experiments. Intriguingly, AEA is predicted to bind at the same intersubunit site despite the strikingly different chemistry. Statistical analyses of the ligand-receptor interactions highlight potentially relevant residues for GlyR potentiation, offering experimentally testable predictions. The predictions for AEA have been validated by electrophysiology recordings of rationally designed mutants. The results highlight the existence of multiple cannabinoid-binding sites for the allosteric regulation of GlyR and put forward an effective strategy for the identification and structural characterization of allosteric binding sites.

References

  1. J Neurosci. 2012 Apr 11;32(15):5200-8 [PMID: 22496565]
  2. Mol Pharmacol. 2006 Mar;69(3):991-7 [PMID: 16332990]
  3. Molecules. 2020 Dec 15;25(24): [PMID: 33333836]
  4. PLoS Comput Biol. 2021 Feb 11;17(2):e1007856 [PMID: 33571182]
  5. J Chem Theory Comput. 2019 Oct 8;15(10):5727-5736 [PMID: 31476127]
  6. Nat Struct Mol Biol. 2017 Feb;24(2):108-113 [PMID: 27991902]
  7. J Chem Theory Comput. 2014 Feb 11;10(2):676-90 [PMID: 26580045]
  8. PLoS One. 2011;6(8):e23886 [PMID: 21901142]
  9. J Chem Phys. 2022 Jul 21;157(3):034101 [PMID: 35868932]
  10. Physiol Rev. 2004 Oct;84(4):1051-95 [PMID: 15383648]
  11. Nat Commun. 2020 Jul 27;11(1):3752 [PMID: 32719334]
  12. Cell. 2021 Feb 18;184(4):957-968.e21 [PMID: 33567265]
  13. Front Mol Biosci. 2021 Mar 29;8:657222 [PMID: 33855050]
  14. Adv Pharmacol. 2017;79:225-253 [PMID: 28528670]
  15. Bioinformatics. 2020 Jun 1;36(11):3379-3384 [PMID: 32163115]
  16. Cell Mol Life Sci. 2018 Feb;75(3):447-465 [PMID: 28791431]
  17. Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10201-6 [PMID: 23737504]
  18. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  19. Commun Biol. 2023 Nov 20;6(1):1182 [PMID: 37985798]
  20. Structure. 2017 Jun 6;25(6):945-950.e2 [PMID: 28479061]
  21. J Mol Biol. 2006 Jul 21;360(4):893-906 [PMID: 16784753]
  22. J Biol Chem. 2012 Nov 23;287(48):40216-23 [PMID: 23038260]
  23. Naunyn Schmiedebergs Arch Pharmacol. 2010 May;381(5):477-82 [PMID: 20339834]
  24. ACS Omega. 2020 Dec 07;5(50):32823-32843 [PMID: 33376921]
  25. Gut Microbes. 2023 Jan-Dec;15(1):2154544 [PMID: 36511640]
  26. Nat Methods. 2021 Apr;18(4):382-388 [PMID: 33782607]
  27. Drug Discov Today. 2018 Feb;23(2):359-365 [PMID: 29030241]
  28. Nat Commun. 2020 Jul 24;11(1):3714 [PMID: 32709852]
  29. Nature. 2015 Oct 8;526(7572):224-9 [PMID: 26344198]
  30. J Pediatr Pharmacol Ther. 2017 May-Jun;22(3):176-185 [PMID: 28638299]
  31. Nat Struct Mol Biol. 2017 Nov;24(11):977-985 [PMID: 28967882]
  32. Nat Commun. 2022 Aug 18;13(1):4862 [PMID: 35982060]
  33. Chem Rev. 2019 May 8;119(9):5775-5848 [PMID: 30758191]
  34. Proc Natl Acad Sci U S A. 2022 Oct 25;119(43):e2208081119 [PMID: 36251999]
  35. J Chem Theory Comput. 2021 Oct 12;17(10):6472-6482 [PMID: 34492188]
  36. J Comput Chem. 2011 Jul 15;32(9):1919-28 [PMID: 21469160]
  37. J Chem Theory Comput. 2015 May 12;11(5):2144-55 [PMID: 26574417]
  38. J Chem Theory Comput. 2021 Oct 12;17(10):6548-6558 [PMID: 34523933]
  39. Int J Biol Macromol. 2024 Jul;273(Pt 2):133086 [PMID: 38871105]
  40. J Phys Chem B. 2010 Jun 17;114(23):7830-43 [PMID: 20496934]
  41. J Chem Inf Model. 2023 Feb 13;63(3):702-710 [PMID: 36656159]
  42. J Chem Theory Comput. 2012 Sep 11;8(9):3257-3273 [PMID: 23341755]
  43. J Chem Phys. 2007 Jan 7;126(1):014101 [PMID: 17212484]
  44. J Chem Inf Model. 2012 Dec 21;52(12):3155-68 [PMID: 23145473]
  45. Wiley Interdiscip Rev Comput Mol Sci. 2014 May;4(3):225-248 [PMID: 25309628]
  46. QRB Discov. 2022 Oct 12;3:e19 [PMID: 37529288]
  47. J Chem Theory Comput. 2013 Jan 8;9(1):687-97 [PMID: 26589065]
  48. J Phys Chem B. 2007 Jul 12;111(27):7812-24 [PMID: 17569554]
  49. PLoS One. 2016 Dec 1;11(12):e0166196 [PMID: 27907003]
  50. Cell. 2024 Feb 29;187(5):1160-1176.e21 [PMID: 38382524]

Grants

  1. ANR-18- CE11-0015/Agence Nationale de la Recherche (French National Research Agency)
  2. 956314 (ALLODD)/EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
  3. 788974 (Dynacotine)/EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)

MeSH Term

Animals
Molecular Dynamics Simulation
Receptors, Glycine
Zebrafish
Allosteric Site
Binding Sites
Arachidonic Acids
Dronabinol
Allosteric Regulation
Cannabinoids
Protein Binding
Polyunsaturated Alkamides
Endocannabinoids
Ligands
Cryoelectron Microscopy

Chemicals

Receptors, Glycine
Arachidonic Acids
Dronabinol
Cannabinoids
Polyunsaturated Alkamides
Endocannabinoids
anandamide
Ligands

Word Cloud

Created with Highcharts 10.0.0bindingGlyRallostericsitesAEAintersubunitTHCmillisecondcoarse-grainedcannabinoid-bindingsitebindreceptorintrasubunitpredictedsimulationhighlightpredictionsGlycinereceptorsregulatedsmall-moleculeseveralCannabinoidsliketetrahydrocannabinolN-arachidonyl-ethanol-amidepotentiateresponsemechanismactionfullyestablishedcombiningCGMDsimulationspoweredMartini3backmappingall-atomrepresentationscharacterizedszebrafishGlyR-α1activestateatomicresolutionBasedhundredsthousandligand-bindingeventsfindcannabinoidstransmembranedomainmodeexcellentagreementrecentcryo-EMstructuresrecapitulatesfullpreviousmutagenesisexperimentsIntriguinglydespitestrikinglydifferentchemistryStatisticalanalysesligand-receptorinteractionspotentiallyrelevantresiduespotentiationofferingexperimentallytestablevalidatedelectrophysiologyrecordingsrationallydesignedmutantsresultsexistencemultipleregulationputforward aneffectivestrategyidentificationstructuralcharacterizationapproachdeciphercannabinoidglycineα1

Similar Articles

Cited By