Bayesian blockwise inference for joint models of longitudinal and multistate data with application to longitudinal multimorbidity analysis.

Sida Chen, Danilo Alvares, Christopher Jackson, Tom Marshall, Krish Nirantharakumar, Sylvia Richardson, Catherine L Saunders, Jessica K Barrett
Author Information
  1. Sida Chen: MRC Biostatistics Unit, University of Cambridge, Cambridge, UK. ORCID
  2. Danilo Alvares: MRC Biostatistics Unit, University of Cambridge, Cambridge, UK. ORCID
  3. Christopher Jackson: MRC Biostatistics Unit, University of Cambridge, Cambridge, UK. ORCID
  4. Tom Marshall: Institute of Applied Health Research, University of Birmingham, Birmingham, UK.
  5. Krish Nirantharakumar: Institute of Applied Health Research, University of Birmingham, Birmingham, UK.
  6. Sylvia Richardson: MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.
  7. Catherine L Saunders: Department of Public Health and Primary Care, University of Cambridge, Cambridge, Cambridgeshire, UK.
  8. Jessica K Barrett: MRC Biostatistics Unit, University of Cambridge, Cambridge, UK. ORCID

Abstract

Multistate models provide a useful framework for modelling complex event history data in clinical settings and have recently been extended to the joint modelling framework to appropriately handle endogenous longitudinal covariates, such as repeatedly measured biomarkers, which are informative about health status and disease progression. However, the practical application of such joint models faces considerable computational challenges. Motivated by a longitudinal multimorbidity analysis of large-scale UK health records, we introduce novel Bayesian inference approaches for these models that are capable of handling complex multistate processes and large datasets with straightforward implementation. These approaches decompose the original estimation task into smaller inference blocks, leveraging parallel computing and facilitating flexible model specification and comparison. Using extensive simulation studies, we show that the proposed approaches achieve satisfactory estimation accuracy, with notable gains in computational efficiency compared to the standard Bayesian estimation strategy. We illustrate our approaches by analysing the coevolution of routinely measured systolic blood pressure and the progression of three important chronic conditions, using a large dataset from the Clinical Practice Research Datalink Aurum database. Our analysis reveals distinct and previously lesser-known association structures between systolic blood pressure and different disease transitions.

Keywords

References

  1. Stat Methods Med Res. 2019 Dec;28(12):3649-3666 [PMID: 30463497]
  2. BMJ. 2015 Jan 20;350:h176 [PMID: 25646760]
  3. Biostatistics. 2011 Oct;12(4):723-36 [PMID: 21415017]
  4. Stat Med. 2021 Aug 30;40(19):4213-4229 [PMID: 34114254]
  5. BMJ. 2012 Aug 30;345:e5567 [PMID: 22936794]
  6. Stat Med. 2024 Jul 30;43(17):3280-3293 [PMID: 38831490]
  7. Stat Med. 2007 May 20;26(11):2389-430 [PMID: 17031868]
  8. PLoS Med. 2023 Nov 3;20(11):e1004310 [PMID: 37922316]
  9. BMC Med. 2020 Jan 10;18(1):5 [PMID: 31918762]
  10. PLoS Med. 2018 May 21;15(5):e1002571 [PMID: 29782486]
  11. J Clin Oncol. 2010 Jun 1;28(16):2796-801 [PMID: 20439643]
  12. Stat Med. 2017 Dec 20;36(29):4719-4742 [PMID: 28872690]
  13. Stat Med. 2016 Sep 30;35(22):3933-48 [PMID: 27090611]
  14. BMC Infect Dis. 2020 Mar 26;20(1):246 [PMID: 32216755]
  15. BMC Med Res Methodol. 2016 Sep 07;16(1):117 [PMID: 27604810]
  16. Age Ageing. 2020 Aug 24;49(5):807-813 [PMID: 32133525]
  17. BMJ Open. 2021 Nov 22;11(11):e048485 [PMID: 34810182]
  18. Int J Epidemiol. 2019 Dec 1;48(6):1740-1740g [PMID: 30859197]
  19. Int J Biostat. 2018 Jan 31;14(1): [PMID: 29389664]

MeSH Term

Bayes Theorem
Humans
Longitudinal Studies
Multimorbidity
Models, Statistical
United Kingdom
Disease Progression
Blood Pressure
Computer Simulation

Word Cloud

Created with Highcharts 10.0.0modelsjointlongitudinalBayesianapproachesdatahealthmultimorbidityanalysisinferencemultistateestimationframeworkmodellingcomplexmeasureddiseaseprogressionapplicationcomputationalrecordslargemodelsystolicbloodpressureMultistateprovideusefuleventhistoryclinicalsettingsrecentlyextendedappropriatelyhandleendogenouscovariatesrepeatedlybiomarkersinformativestatusHoweverpracticalfacesconsiderablechallengesMotivatedlarge-scaleUKintroducenovelcapablehandlingprocessesdatasetsstraightforwardimplementationdecomposeoriginaltasksmallerblocksleveragingparallelcomputingfacilitatingflexiblespecificationcomparisonUsingextensivesimulationstudiesshowproposedachievesatisfactoryaccuracynotablegainsefficiencycomparedstandardstrategyillustrateanalysingcoevolutionroutinelythreeimportantchronicconditionsusingdatasetClinicalPracticeResearchDatalinkAurumdatabaserevealsdistinctpreviouslylesser-knownassociationstructuresdifferenttransitionsblockwiseMarkovchainMonteCarloelectronic

Similar Articles

Cited By