Surpassing the Diffraction Limit in Label-Free Optical Microscopy.

David Palounek, Milan Vala, Łukasz Bujak, Ivan Kopal, Kateřina Jiříková, Yevhenii Shaidiuk, Marek Piliarik
Author Information
  1. David Palounek: Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, Prague 8 18200, Czech Republic. ORCID
  2. Milan Vala: Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, Prague 8 18200, Czech Republic. ORCID
  3. Łukasz Bujak: Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, Prague 8 18200, Czech Republic. ORCID
  4. Ivan Kopal: Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, Prague 8 18200, Czech Republic. ORCID
  5. Kateřina Jiříková: Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, Prague 8 18200, Czech Republic. ORCID
  6. Yevhenii Shaidiuk: Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, Prague 8 18200, Czech Republic. ORCID
  7. Marek Piliarik: Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, Prague 8 18200, Czech Republic. ORCID

Abstract

Super-resolution optical microscopy has enhanced our ability to visualize biological structures on the nanoscale. Fluorescence-based techniques are today irreplaceable in exploring the structure and dynamics of biological matter with high specificity and resolution. However, the fluorescence labeling concept narrows the range of observed interactions and fundamentally limits the spatiotemporal resolution. In contrast, emerging label-free imaging methods are not inherently limited by speed and have the potential to capture the entirety of complex biological processes and dynamics. While pushing a complex unlabeled microscopy image beyond the diffraction limit to single-molecule resolution and capturing dynamic processes at biomolecular time scales is widely regarded as unachievable, recent experimental strides suggest that elements of this vision might be already in place. These techniques derive signals directly from the sample using inherent optical phenomena, such as elastic and inelastic scattering, thereby enabling the measurement of additional properties, such as molecular mass, orientation, or chemical composition. This perspective aims to identify the cornerstones of future label-free super-resolution imaging techniques, discuss their practical applications and theoretical challenges, and explore directions that promise to enhance our understanding of complex biological systems through innovative optical advancements. Drawing on both traditional and emerging techniques, label-free super-resolution microscopy is evolving to offer detailed and dynamic imaging of living cells, surpassing the capabilities of conventional methods for visualizing biological complexities without the use of labels.

References

  1. Biomed Opt Express. 2021 Aug 23;12(9):5751-5769 [PMID: 34692213]
  2. ACS Nano. 2017 Mar 28;11(3):2575-2585 [PMID: 28067508]
  3. Nat Methods. 2023 Mar;20(3):442-447 [PMID: 36849549]
  4. Science. 2017 Feb 10;355(6325):606-612 [PMID: 28008086]
  5. Small Methods. 2021 Apr;5(4):e2000985 [PMID: 34927839]
  6. Nano Lett. 2021 May 12;21(9):3887-3893 [PMID: 33904733]
  7. Nature. 2017 Apr 27;544(7651):465-470 [PMID: 28424513]
  8. Nat Commun. 2020 Jul 7;11(1):3388 [PMID: 32636396]
  9. Light Sci Appl. 2023 Jun 5;12(1):137 [PMID: 37277396]
  10. Adv Sci (Weinh). 2020 Nov 17;8(1):2002886 [PMID: 33437583]
  11. Nat Commun. 2015 Dec 02;6:10095 [PMID: 26626144]
  12. Nano Lett. 2014;14(4):2065-70 [PMID: 24597479]
  13. Cell. 2010 Dec 23;143(7):1047-58 [PMID: 21168201]
  14. Nat Nanotechnol. 2014 Nov;9(11):933-9 [PMID: 25173831]
  15. Nucleic Acids Res. 2020 Sep 25;48(17):e97 [PMID: 32756898]
  16. Nano Lett. 2007 Aug;7(8):2263-6 [PMID: 17637017]
  17. Sci Adv. 2023 Jun 16;9(24):eade9118 [PMID: 37327330]
  18. Chem Rev. 2017 Jun 14;117(11):7377-7427 [PMID: 28262022]
  19. Nat Methods. 2010 May;7(5):377-81 [PMID: 20364147]
  20. Chem Rev. 2021 Oct 13;121(19):11937-11970 [PMID: 34587448]
  21. Opt Lett. 2022 Sep 1;47(17):4552-4555 [PMID: 36048702]
  22. Nat Commun. 2023 May 18;14(1):2854 [PMID: 37202407]
  23. Nat Commun. 2023 Jun 7;14(1):3337 [PMID: 37286641]
  24. Nat Commun. 2023 Apr 7;14(1):1962 [PMID: 37029107]
  25. Nat Methods. 2018 Dec;15(12):1090-1097 [PMID: 30478326]
  26. Nat Commun. 2024 May 16;15(1):4180 [PMID: 38755148]
  27. Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6117-6122 [PMID: 29844182]
  28. Nat Methods. 2019 Jan;16(1):33-41 [PMID: 30573813]
  29. Adv Mater. 2017 Feb;29(8): [PMID: 27991699]
  30. Nat Commun. 2021 May 19;12(1):2921 [PMID: 34012021]
  31. J Microsc. 2000 May;198(Pt 2):82-7 [PMID: 10810003]
  32. Nat Photonics. 2023 Oct;17(10):846-855 [PMID: 38162388]
  33. Nanoscale. 2017 May 18;9(19):6567-6574 [PMID: 28470293]
  34. Nat Methods. 2023 Nov;20(11):1748-1758 [PMID: 37770712]
  35. J Cell Biol. 2021 Sep 6;220(9): [PMID: 34228783]
  36. Elife. 2020 May 01;9: [PMID: 32356725]
  37. ACS Nano. 2018 May 22;12(5):4178-4185 [PMID: 29672025]
  38. Opt Lett. 1994 Jun 1;19(11):780-2 [PMID: 19844443]
  39. Nat Methods. 2021 Oct;18(10):1159-1160 [PMID: 34608317]
  40. Nat Photonics. 2013;7:449-453 [PMID: 24436725]
  41. Opt Express. 2006 May 1;14(9):3830-9 [PMID: 19516529]
  42. Laser Photon Rev. 2023 Dec;17(12): [PMID: 38883699]
  43. Opt Express. 2014 Apr 21;22(8):9159-70 [PMID: 24787806]
  44. Biophys J. 2010 Aug 9;99(4):1303-10 [PMID: 20713016]
  45. Nat Biotechnol. 2016 Sep;34(9):987-92 [PMID: 27376584]
  46. Opt Express. 2008 Nov 10;16(23):19260-70 [PMID: 19582018]
  47. Biophys Rep (N Y). 2023 Aug 18;3(3):100123 [PMID: 37680382]
  48. Biopolymers. 2011 May;95(5):322-31 [PMID: 21254001]
  49. Nat Methods. 2021 Oct;18(10):1247-1252 [PMID: 34608319]
  50. J Phys Chem B. 2017 Sep 21;121(37):8838-8846 [PMID: 28741348]
  51. Light Sci Appl. 2021 Apr 20;10(1):87 [PMID: 33879766]
  52. Nat Mater. 2012 Mar 25;11(5):432-5 [PMID: 22447113]
  53. Nat Methods. 2018 Mar;15(3):173-182 [PMID: 29377014]
  54. Int J Mol Sci. 2022 Jun 21;23(13): [PMID: 35805897]
  55. Adv Sci (Weinh). 2022 Jul;9(20):e2200315 [PMID: 35521971]
  56. Opt Express. 2022 Dec 5;30(25):45233-45245 [PMID: 36522930]
  57. Cold Spring Harb Protoc. 2013 Jun 01;2013(6):498-520 [PMID: 23734025]
  58. Nano Lett. 2012 Feb 8;12(2):1092-5 [PMID: 22268768]
  59. Science. 2018 Apr 27;360(6387):423-427 [PMID: 29700264]
  60. Nat Biotechnol. 2018 Jun;36(5):460-468 [PMID: 29658943]
  61. Science. 2008 Dec 19;322(5909):1857-61 [PMID: 19095943]
  62. Nat Chem. 2023 Sep;15(9):1306-1316 [PMID: 37337111]
  63. Science. 2023 Mar 10;379(6636):1004-1010 [PMID: 36893244]
  64. Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13081-6 [PMID: 16141335]
  65. Opt Lett. 1982 Aug 1;7(8):350-2 [PMID: 19714017]
  66. Philos Trans A Math Phys Eng Sci. 2022 Apr 4;380(2220):20210110 [PMID: 35152764]
  67. Small Methods. 2021 Oct;5(10):e2100370 [PMID: 34927934]
  68. Nat Commun. 2014 Jul 29;5:4495 [PMID: 25072241]
  69. IEEE Trans Image Process. 2017 Sep;26(9):4509-4522 [PMID: 28641250]
  70. J Am Chem Soc. 2021 Mar 3;143(8):3060-3064 [PMID: 33596055]
  71. Nature. 2011 Sep 11;478(7368):204-8 [PMID: 21909116]
  72. Nat Methods. 2022 May;19(5):554-559 [PMID: 35501386]
  73. Nat Methods. 2022 Jun;19(6):751-758 [PMID: 35637303]
  74. Nat Methods. 2009 Dec;6(12):923-7 [PMID: 19881510]
  75. Annu Rev Phys Chem. 2013;64:77-99 [PMID: 23245525]
  76. Nat Photonics. 2019 Jun;13(6):412-417 [PMID: 32607124]
  77. Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:514-517 [PMID: 31709031]
  78. Cytometry A. 2013 Sep;83(9):767-79 [PMID: 23585290]
  79. Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18423-18428 [PMID: 31444302]
  80. IEEE Trans Med Imaging. 1982;1(2):81-94 [PMID: 18238261]
  81. Nat Methods. 2021 Oct;18(10):1239-1246 [PMID: 34608318]
  82. Opt Express. 2006 Jan 9;14(1):405-14 [PMID: 19503354]
  83. Opt Lett. 2017 Nov 1;42(21):4410-4413 [PMID: 29088176]
  84. Curr Opin Chem Biol. 2022 Jun;68:102132 [PMID: 35405425]
  85. Elife. 2020 Jul 27;9: [PMID: 32716843]
  86. Nat Methods. 2023 Mar;20(3):448-458 [PMID: 36797410]
  87. Nat Methods. 2019 Jan;16(1):103-110 [PMID: 30559434]
  88. Phys Rev Lett. 2004 Jul 16;93(3):037401 [PMID: 15323866]
  89. iScience. 2023 Oct 04;26(11):108145 [PMID: 37867953]
  90. Light Sci Appl. 2018 Feb 23;7:17141 [PMID: 30839514]
  91. Nat Methods. 2018 Apr;15(4):263-266 [PMID: 29457791]
  92. Nat Rev Methods Primers. 2021;1: [PMID: 35663461]
  93. Opt Lett. 2013 Nov 1;38(21):4510-3 [PMID: 24177132]
  94. Biomed Opt Express. 2020 Apr 24;11(5):2705-2721 [PMID: 32499954]
  95. Opt Express. 2014 Apr 21;22(8):9854-70 [PMID: 24787869]
  96. ACS Nano. 2017 Dec 26;11(12):12677-12686 [PMID: 29165993]
  97. Biomed Opt Express. 2017 Apr 17;8(5):2496-2518 [PMID: 28663887]
  98. Annu Rev Anal Chem (Palo Alto Calif). 2022 Jun 13;15(1):37-55 [PMID: 35316608]
  99. Nat Commun. 2021 Jun 15;12(1):3648 [PMID: 34131146]
  100. Light Sci Appl. 2023 Nov 13;12(1):270 [PMID: 37953294]
  101. Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18911-6 [PMID: 17142314]
  102. Nat Cell Biol. 2019 Jan;21(1):72-84 [PMID: 30602772]
  103. Chem Rev. 2017 Dec 13;117(23):13890-13908 [PMID: 29125755]
  104. Anal Bioanal Chem. 2012 Jun;403(8):2197-202 [PMID: 22411535]
  105. Science. 2006 Sep 15;313(5793):1642-5 [PMID: 16902090]
  106. Science. 2015 Jan 30;347(6221):543-8 [PMID: 25592419]
  107. Phys Rev Lett. 2022 Nov 18;129(21):213201 [PMID: 36461964]
  108. Nat Methods. 2021 Sep;18(9):1082-1090 [PMID: 34480155]
  109. Nat Methods. 2006 Oct;3(10):793-5 [PMID: 16896339]
  110. Chem Rev. 2017 Apr 12;117(7):5070-5094 [PMID: 27966347]
  111. Nano Lett. 2010 Nov 10;10(11):4756-61 [PMID: 20957983]
  112. Nat Biotechnol. 2023 Feb;41(2):282-292 [PMID: 36163547]
  113. Light Sci Appl. 2019 Jun 12;8:56 [PMID: 31231522]
  114. Nat Commun. 2016 Aug 12;7:12471 [PMID: 27514992]
  115. Nat Methods. 2014 Mar;11(3):313-8 [PMID: 24487583]
  116. Nanoscale. 2024 Feb 29;16(9):4703-4709 [PMID: 38268454]

Word Cloud

Created with Highcharts 10.0.0biologicaltechniquesopticalmicroscopyresolutionlabel-freeimagingcomplexdynamicsemergingmethodsprocessesdynamicsuper-resolutionSuper-resolutionenhancedabilityvisualizestructuresnanoscaleFluorescence-basedtodayirreplaceableexploringstructurematterhighspecificityHoweverfluorescencelabelingconceptnarrowsrangeobservedinteractionsfundamentallylimitsspatiotemporalcontrastinherentlylimitedspeedpotentialcaptureentiretypushingunlabeledimagebeyonddiffractionlimitsingle-moleculecapturingbiomoleculartimescaleswidelyregardedunachievablerecentexperimentalstridessuggestelementsvisionmightalreadyplacederivesignalsdirectlysampleusinginherentphenomenaelasticinelasticscatteringtherebyenablingmeasurementadditionalpropertiesmolecularmassorientationchemicalcompositionperspectiveaimsidentifycornerstonesfuturediscusspracticalapplicationstheoreticalchallengesexploredirectionspromiseenhanceunderstandingsystemsinnovativeadvancementsDrawingtraditionalevolvingofferdetailedlivingcellssurpassingcapabilitiesconventionalvisualizingcomplexitieswithoutuselabelsSurpassingDiffractionLimitLabel-FreeOpticalMicroscopy

Similar Articles

Cited By