Mitochondrial destabilization in tendinopathy and potential therapeutic strategies.

Linxiang Cheng, Qiangqiang Zheng, Kaijie Qiu, Dai Fei Elmer Ker, Xiao Chen, Zi Yin
Author Information
  1. Linxiang Cheng: Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
  2. Qiangqiang Zheng: Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, And Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
  3. Kaijie Qiu: Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, And Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
  4. Dai Fei Elmer Ker: Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong.
  5. Xiao Chen: Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, And Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
  6. Zi Yin: Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.

Abstract

Tendinopathy is a prevalent aging-related disorder characterized by pain, swelling, and impaired function, often resulting from micro-scarring and degeneration caused by overuse or trauma. Current interventions for tendinopathy have limited efficacy, highlighting the need for innovative therapies. Mitochondria play an underappreciated and yet crucial role in tenocytes function, including energy production, redox homeostasis, autophagy, and calcium regulation. Abnormalities in mitochondrial function may lead to cellular senescence. Within this context, this review provides an overview of the physiological functions of mitochondria in tendons and presents current insights into mitochondrial dysfunction in tendinopathy. It also proposes potential therapeutic strategies that focus on targeting mitochondrial health in tenocytes. These strategies include: (1) utilizing reactive oxygen species (ROS) scavengers to mitigate the detrimental effects of aberrant mitochondria, (2) employing mitochondria-protecting agents to reduce the production of dysfunctional mitochondria, and (3) supplementing with exogenous normal mitochondria. In conclusion, mitochondria-targeted therapies hold great promise for restoring mitochondrial function and improving outcomes in patients with tendinopathy. : Tendinopathy is challenging to treat effectively due to its poorly understood pathogenesis. This review thoroughly analyzes the role of mitochondria in tenocytes and proposes potential strategies for the mitochondrial treatment of tendinopathy. These findings establish a theoretical basis for future research and the clinical translation of mitochondrial therapy for tendinopathy.

Keywords

References

  1. Nature. 2016 Jul 27;535(7613):551-5 [PMID: 27466127]
  2. Am J Phys Med Rehabil. 2022 Aug 1;101(8):801-807 [PMID: 35859290]
  3. Arthritis Rheum. 2003 Mar;48(3):700-8 [PMID: 12632423]
  4. Nature. 2016 Dec 1;540(7631):139-143 [PMID: 27798601]
  5. EMBO Rep. 2014 Jan;15(1):86-93 [PMID: 24357652]
  6. Redox Biol. 2015;4:6-13 [PMID: 25479550]
  7. Free Radic Biol Med. 2009 Aug 15;47(4):333-43 [PMID: 19427899]
  8. J Physiol Biochem. 2018 May;74(2):335-343 [PMID: 29589186]
  9. Lancet. 2012 May 12;379(9828):1825-34 [PMID: 22482939]
  10. J Orthop Translat. 2018 Apr 14;14:23-33 [PMID: 30035030]
  11. J Parkinsons Dis. 2017;7(1):13-29 [PMID: 27911343]
  12. Biol Chem. 2020 May 26;401(6-7):821-833 [PMID: 32229651]
  13. Nature. 2024 May;629(8012):660-668 [PMID: 38693258]
  14. Development. 2018 Apr 13;145(8): [PMID: 29654217]
  15. J Bone Joint Surg Am. 1991 Dec;73(10):1507-25 [PMID: 1748700]
  16. Am J Physiol Renal Physiol. 2020 Sep 1;319(3):F403-F413 [PMID: 32686525]
  17. Biochim Biophys Acta. 2015 Nov;1847(11):1347-53 [PMID: 26050973]
  18. Nat Rev Mol Cell Biol. 2011 Jan;12(1):9-14 [PMID: 21179058]
  19. J Cell Sci. 2005 Sep 15;118(Pt 18):4141-51 [PMID: 16118244]
  20. Sci Adv. 2020 Apr 29;6(18):eaay9526 [PMID: 32494667]
  21. Adv Exp Med Biol. 2016;920:3-10 [PMID: 27535244]
  22. Cell Metab. 2021 Feb 2;33(2):270-282.e8 [PMID: 33278339]
  23. Aging Cell. 2020 Oct;19(10):e13213 [PMID: 32779818]
  24. Circ Res. 2012 Apr 13;110(8):1109-24 [PMID: 22499901]
  25. Mediators Inflamm. 2012;2012:436203 [PMID: 23258952]
  26. Biochim Biophys Acta Mol Basis Dis. 2018 Nov;1864(11):3685-3695 [PMID: 30251688]
  27. Elife. 2016 Jun 02;5: [PMID: 27253069]
  28. Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):19924-19929 [PMID: 31527235]
  29. Nature. 2020 Jun;582(7810):129-133 [PMID: 32494073]
  30. Science. 2004 Feb 13;303(5660):1007-10 [PMID: 14963329]
  31. Stem Cell Rev Rep. 2022 Dec;18(8):3092-3111 [PMID: 35943688]
  32. EFORT Open Rev. 2020 Oct 26;5(10):584-592 [PMID: 33204500]
  33. Sci Rep. 2020 Dec 3;10(1):21045 [PMID: 33273629]
  34. Mitochondrion. 2013 Mar;13(2):71-82 [PMID: 23376030]
  35. J Control Release. 2015 Jul 10;209:260-71 [PMID: 25966361]
  36. Biochem Biophys Res Commun. 2017 Jan 15;482(3):426-431 [PMID: 28212726]
  37. Elife. 2020 Jul 10;9: [PMID: 32648542]
  38. J Orthop Res. 2018 Feb;36(2):730-738 [PMID: 28980722]
  39. Sci Adv. 2021 Oct;7(40):eabj0534 [PMID: 34586849]
  40. J Orthop Res. 2020 Nov;38(11):2513-2520 [PMID: 32285963]
  41. N Engl J Med. 2008 Jul 31;359(5):473-81 [PMID: 18669426]
  42. Adv Sci (Weinh). 2023 Feb;10(4):e2204871 [PMID: 36507570]
  43. Br J Sports Med. 2018 Dec;52(24):1564-1574 [PMID: 30170996]
  44. Nat Nanotechnol. 2024 Sep;19(9):1375-1385 [PMID: 38802669]
  45. Nat Clin Pract Rheumatol. 2008 Feb;4(2):82-9 [PMID: 18235537]
  46. Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):15363-15373 [PMID: 32554501]
  47. ACS Nano. 2020 Jun 23;14(6):6636-6648 [PMID: 32464051]
  48. Biomed Pharmacother. 2019 Aug;116:108999 [PMID: 31146109]
  49. Annu Rev Genet. 2012;46:265-87 [PMID: 22934639]
  50. PLoS One. 2012;7(9):e45319 [PMID: 23028930]
  51. Neurobiol Dis. 2004 Nov;17(2):144-54 [PMID: 15474352]
  52. Sci Rep. 2018 Nov 19;8(1):17027 [PMID: 30451947]
  53. Arthritis Res Ther. 2017 Jan 25;19(1):16 [PMID: 28122639]
  54. Biochim Biophys Acta Mol Cell Res. 2019 Jul;1866(7):1068-1078 [PMID: 30982525]
  55. Free Radic Biol Med. 2014 Apr;69:318-23 [PMID: 24509159]
  56. Science. 2012 Aug 31;337(6098):1062-5 [PMID: 22936770]
  57. Mol Cell Biol. 2003 Aug;23(15):5409-20 [PMID: 12861026]
  58. Free Radic Res. 2009 Apr;43(4):323-8 [PMID: 19235604]
  59. Am J Sports Med. 2000 Jul-Aug;28(4):499-505 [PMID: 10921640]
  60. Ann N Y Acad Sci. 2021 Apr;1490(1):3-12 [PMID: 32501571]
  61. Int J Mol Sci. 2023 Oct 14;24(20): [PMID: 37894875]
  62. Redox Biol. 2022 Jun;52:102304 [PMID: 35413643]
  63. Nat Neurosci. 2019 Mar;22(3):401-412 [PMID: 30742114]
  64. Mol Biol Cell. 2001 Aug;12(8):2245-56 [PMID: 11514614]
  65. Biomolecules. 2015 Apr 15;5(2):472-84 [PMID: 25884116]
  66. J Bioenerg Biomembr. 2017 Feb;49(1):27-47 [PMID: 27497945]
  67. Sci Adv. 2016 Nov 18;2(11):e1600874 [PMID: 28138519]
  68. J Orthop Res. 2023 Feb;41(2):278-289 [PMID: 35488732]
  69. EMBO J. 2013 May 2;32(9):1280-92 [PMID: 23584531]
  70. Am J Physiol Renal Physiol. 2016 Mar 15;310(6):F547-59 [PMID: 26719366]
  71. Science. 1998 Jun 12;280(5370):1763-6 [PMID: 9624056]
  72. Pediatr Cardiol. 2011 Mar;32(3):267-74 [PMID: 21210091]
  73. Nat Commun. 2021 Feb 26;12(1):1293 [PMID: 33637721]
  74. FEBS Lett. 2018 Mar;592(5):728-742 [PMID: 29281123]
  75. JCI Insight. 2018 Sep 6;3(17): [PMID: 30185676]
  76. Ann N Y Acad Sci. 2021 Apr;1490(1):29-41 [PMID: 33843069]
  77. Front Oncol. 2017 Jul 05;7:140 [PMID: 28725634]
  78. J Am Soc Nephrol. 2017 Oct;28(10):2856-2865 [PMID: 28778860]
  79. Nat Commun. 2023 Sep 18;14(1):5781 [PMID: 37723135]
  80. FASEB J. 2015 Dec;29(12):4766-71 [PMID: 26253366]
  81. Clin Orthop Relat Res. 2008 Jul;466(7):1539-54 [PMID: 18446422]
  82. J Bone Joint Surg Br. 2009 Mar;91(3):417-24 [PMID: 19258623]
  83. Nature. 2015 Dec 3;528(7580):93-8 [PMID: 26536111]
  84. Acta Biochim Biophys Sin (Shanghai). 2020 Sep 8;52(9):917-926 [PMID: 32785581]
  85. Crit Rev Ther Drug Carrier Syst. 2003;20(1):1-62 [PMID: 12911263]
  86. PLoS One. 2011 Mar 28;6(3):e18317 [PMID: 21512578]
  87. Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2604-9 [PMID: 20133784]
  88. Cancer Res. 2004 Feb 1;64(3):985-93 [PMID: 14871829]
  89. Arterioscler Thromb Vasc Biol. 2016 Apr;36(4):663-672 [PMID: 26868211]
  90. Am J Sports Med. 2000 Nov-Dec;28(6):857-63 [PMID: 11101109]
  91. Cell Death Differ. 2016 Feb;23(2):231-41 [PMID: 26206091]
  92. Front Physiol. 2014 Jul 15;5:259 [PMID: 25076911]
  93. Essays Biochem. 2018 Jul 20;62(3):341-360 [PMID: 30030364]
  94. Curr Opin Neurol. 2019 Oct;32(5):715-721 [PMID: 31408013]
  95. Cell. 2020 Oct 1;183(1):94-109.e23 [PMID: 32937105]
  96. BMC Biol. 2023 Jun 6;21(1):132 [PMID: 37280595]
  97. Stem Cells. 2008 Apr;26(4):960-8 [PMID: 18218821]
  98. Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13651-6 [PMID: 26474831]
  99. Sci Transl Med. 2013 Jul 3;5(192):192ra85 [PMID: 23825301]
  100. Nature. 2015 Aug 20;524(7565):370-4 [PMID: 26161729]
  101. J Bone Joint Surg Am. 2021 Jan 20;103(2):174-183 [PMID: 32941310]
  102. Int J Mol Sci. 2017 Jul 20;18(7): [PMID: 28726733]
  103. J Shoulder Elbow Surg. 2007 Sep-Oct;16(5 Suppl):S208-14 [PMID: 17509903]
  104. Biochim Biophys Acta. 2015 Oct;1847(10):1075-84 [PMID: 26071084]
  105. Cell Prolif. 2020 Mar;53(3):e12779 [PMID: 32020711]
  106. J Orthop Res. 2015 Jun;33(6):780-4 [PMID: 25764524]
  107. J Clin Endocrinol Metab. 2020 Apr 1;105(4): [PMID: 31833547]
  108. Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):2834-9 [PMID: 23288904]
  109. Drug Res (Stuttg). 2015 Oct;65(10):555-60 [PMID: 25463594]
  110. Clin Orthop Relat Res. 2018 Aug;476(8):1633-1641 [PMID: 29601383]
  111. Chem Biol Interact. 2018 Feb 1;281:121-136 [PMID: 29258867]
  112. J Cell Sci. 2004 Dec 15;117(Pt 26):6535-46 [PMID: 15572413]
  113. J Am Soc Nephrol. 2013 Jul;24(8):1250-61 [PMID: 23813215]
  114. Nat Rev Neurosci. 2019 Mar;20(3):148-160 [PMID: 30737462]
  115. Blood. 2017 Oct 5;130(14):1649-1660 [PMID: 28733324]
  116. Sci Adv. 2019 Nov 20;5(11):eaaw7215 [PMID: 31799389]
  117. Sci Rep. 2015 Jan 20;5:7885 [PMID: 25601284]
  118. ACS Nano. 2021 Aug 24;15(8):13339-13350 [PMID: 34324304]
  119. Science. 2004 Aug 6;305(5685):858-62 [PMID: 15297672]
  120. Circ Cardiovasc Interv. 2017 Sep;10(9): [PMID: 28916603]
  121. J Clin Invest. 2023 Feb 15;133(4): [PMID: 36480284]
  122. J Foot Ankle Res. 2020 Sep 29;13(1):59 [PMID: 32993702]
  123. Redox Biol. 2015;4:193-9 [PMID: 25598486]
  124. Osteoarthritis Cartilage. 2021 May;29(5):707-717 [PMID: 33609694]
  125. Hum Mol Genet. 2011 May 1;20(9):1726-37 [PMID: 21296869]
  126. Trends Endocrinol Metab. 2016 Feb;27(2):105-117 [PMID: 26754340]
  127. Cell. 2012 Mar 16;148(6):1145-59 [PMID: 22424226]
  128. Nat Rev Mol Cell Biol. 2020 Feb;21(2):85-100 [PMID: 31636403]
  129. Methods Mol Biol. 2009;554:165-81 [PMID: 19513674]
  130. Immunity. 2015 Mar 17;42(3):406-17 [PMID: 25786173]
  131. Biochim Biophys Acta Bioenerg. 2017 Aug;1858(8):602-614 [PMID: 28104365]
  132. J Agric Food Chem. 2002 Dec 18;50(26):7548-55 [PMID: 12475269]
  133. Aging Cell. 2015 Feb;14(1):1-7 [PMID: 25399755]
  134. Cell Death Dis. 2022 Apr 23;13(4):402 [PMID: 35461310]
  135. Cardiovasc Res. 2014 Sep 1;103(4):619-28 [PMID: 24776598]
  136. J Orthop Res. 2002 Nov;20(6):1372-9 [PMID: 12472255]
  137. Annu Rev Cell Dev Biol. 2006;22:79-99 [PMID: 16704336]
  138. Cell Death Dis. 2016 Jun 09;7(6):e2253 [PMID: 27277675]
  139. J Nutr Health Aging. 2014 Apr;18(4):441-8 [PMID: 24676328]
  140. J Histochem Cytochem. 2015 May;63(5):301-11 [PMID: 25673287]
  141. J Tissue Eng Regen Med. 2013 Sep;7(9):673-86 [PMID: 22499564]
  142. Acta Biomater. 2022 Oct 15;152:440-452 [PMID: 36108965]
  143. PLoS One. 2015 May 21;10(5):e0127811 [PMID: 25996876]
  144. Circ Heart Fail. 2017 Dec;10(12): [PMID: 29217757]
  145. Nat Med. 2012 Apr 15;18(5):759-65 [PMID: 22504485]
  146. Redox Biol. 2020 Jul;34:101517 [PMID: 32535544]
  147. Nat Rev Dis Primers. 2021 Jan 7;7(1):1 [PMID: 33414454]
  148. Mater Sci Eng C Mater Biol Appl. 2019 Oct;103:109711 [PMID: 31349489]
  149. Front Immunol. 2018 May 04;9:832 [PMID: 29780380]
  150. Stem Cells Int. 2017;2017:7610414 [PMID: 28751917]
  151. Mol Cell Biol. 2012 Jul;32(13):2570-84 [PMID: 22547685]
  152. Nature. 2015 Aug 20;524(7565):309-314 [PMID: 26266977]
  153. Clin Orthop Relat Res. 2008 Jul;466(7):1528-38 [PMID: 18478310]
  154. Biochim Biophys Acta. 2006 May-Jun;1757(5-6):692-9 [PMID: 16729962]
  155. Nat Cell Biol. 2017 Jul;19(7):856-863 [PMID: 28628083]
  156. Pharmacogn Rev. 2017 Jan-Jun;11(21):8-12 [PMID: 28503046]
  157. Semin Cell Dev Biol. 2021 Aug;116:160-168 [PMID: 33741252]
  158. Expert Opin Pharmacother. 2020 Aug;21(12):1467-1477 [PMID: 32511031]
  159. Stem Cell Res Ther. 2023 Apr 26;14(1):104 [PMID: 37101277]
  160. Physiol Rev. 1994 Jan;74(1):139-62 [PMID: 8295932]
  161. Cell Stem Cell. 2021 Mar 4;28(3):394-408 [PMID: 33667360]
  162. EMBO Rep. 2012 Apr;13(4):378-85 [PMID: 22354088]
  163. Stem Cell Res Ther. 2020 Mar 20;11(1):131 [PMID: 32197645]
  164. J Gastroenterol Hepatol. 2020 Dec;35(12):2241-2247 [PMID: 32386240]
  165. Am J Sports Med. 2022 Jul;50(9):2488-2496 [PMID: 35666137]
  166. Arthritis Res Ther. 2018 May 29;20(1):95 [PMID: 29843785]
  167. Antioxidants (Basel). 2021 Apr 28;10(5): [PMID: 33925007]
  168. FEBS J. 2017 Jan;284(2):183-195 [PMID: 27462821]
  169. Nature. 2023 Oct;622(7983):627-636 [PMID: 37821702]
  170. Sports Med. 2018 Aug;48(8):1875-1891 [PMID: 29766442]
  171. Br J Pharmacol. 2014 Apr;171(8):2029-50 [PMID: 24117165]
  172. Adv Sci (Weinh). 2022 Nov;9(31):e2202542 [PMID: 36000796]
  173. BMC Musculoskelet Disord. 2016 Jan 13;17:16 [PMID: 26759254]
  174. Annu Rev Pathol. 2020 Jan 24;15:235-259 [PMID: 31585519]
  175. Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5225-9 [PMID: 18362356]
  176. Biochim Biophys Acta. 2006 May-Jun;1763(5-6):531-41 [PMID: 16487606]
  177. Biochim Biophys Acta. 2003 Jun 17;1641(1):35-41 [PMID: 12788227]
  178. Physiother Res Int. 2015 Jun;20(2):108-25 [PMID: 25450903]
  179. Theranostics. 2019 Mar 17;9(7):2017-2035 [PMID: 31037154]
  180. Stem Cells Transl Med. 2018 May;7(5):404-414 [PMID: 29573225]
  181. Front Cell Dev Biol. 2020 Jul 16;8:595 [PMID: 32766245]
  182. PLoS One. 2019 May 2;14(5):e0216385 [PMID: 31048932]
  183. Cell. 2016 Oct 6;167(2):457-470.e13 [PMID: 27667687]
  184. Adv Sci (Weinh). 2022 Feb;9(4):e2103839 [PMID: 34894103]
  185. Nat Rev Neurosci. 2019 Jan;20(1):34-48 [PMID: 30464208]
  186. Br J Pharmacol. 2014 Apr;171(8):2017-28 [PMID: 24134698]
  187. Front Neurosci. 2019 May 22;13:512 [PMID: 31191222]
  188. Ageing Res Rev. 2019 Sep;54:100940 [PMID: 31415807]
  189. Cell. 2010 Apr 16;141(2):280-9 [PMID: 20403324]
  190. J Orthop Translat. 2020 Apr 02;23:113-121 [PMID: 32642426]

Word Cloud

Created with Highcharts 10.0.0tendinopathymitochondrialmitochondriastrategiesfunctionTendinopathytenocytespotentialtherapiesMitochondriaroleproductionreviewproposestherapeuticprevalentaging-relateddisordercharacterizedpainswellingimpairedoftenresultingmicro-scarringdegenerationcausedoverusetraumaCurrentinterventionslimitedefficacyhighlightingneedinnovativeplayunderappreciatedyetcrucialincludingenergyredoxhomeostasisautophagycalciumregulationAbnormalitiesmayleadcellularsenescenceWithincontextprovidesoverviewphysiologicalfunctionstendonspresentscurrentinsightsdysfunctionalsofocustargetinghealthinclude:1utilizingreactiveoxygenspeciesROSscavengersmitigatedetrimentaleffectsaberrant2employingmitochondria-protectingagentsreducedysfunctional3supplementingexogenousnormalconclusionmitochondria-targetedholdgreatpromiserestoringimprovingoutcomespatients:challengingtreateffectivelyduepoorlyunderstoodpathogenesisthoroughlyanalyzestreatmentfindingsestablishtheoreticalbasisfutureresearchclinicaltranslationtherapyMitochondrialdestabilizationAgingStemcellsTherapeutic

Similar Articles

Cited By