In the arm-in-cage test, topical repellents activate mosquitoes to disengage upon contact instead of repelling them at distance.

Mathurin Fatou, Pie Müller
Author Information
  1. Mathurin Fatou: Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland. mathurin.fatou@swisstph.ch.
  2. Pie Müller: Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.

Abstract

Topical repellents provide protection against mosquito bites and their efficacy is often assessed using the arm-in-cage test. The arm-in-cage test estimates the repellent's protection time by exposing a repellent-treated forearm to host-seeking mosquitoes inside a cage at regular intervals until the first confirmed mosquito bite. However, the test does not reveal the repellents' behavioural mode of action. To understand how mosquitoes interact with topical repellents in the arm-in-cage test, we used a 3D infrared video camera system to track individual Aedes aegypti and Anopheles stephensi females during exposure to either a repellent-treated or an untreated forearm. The repellents tested were 20% (m/m) ethanolic solutions of N, N-diethyl-meta-toluamide, p-menthane-3,8-diol, icaridin and ethyl butylacetylaminopropionate. All four repellents substantially reduced the number of bites compared to an untreated forearm, while the flight trajectories indicate that the repellents do not prevent skin contact as the mosquitoes made multiple brief contacts with the treated forearm. We conclude that, in the context of the arm-in-cage test, topical repellents activate mosquitoes to disengage from the forearm with undirected displacements upon contact rather than being repelled at distance by volatile odorants.

Keywords

References

  1. Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013). [PMID: 23563266]
  2. Brady, O. J. et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760–e1760 (2012). [PMID: 22880140]
  3. WHO. World malaria report 2020: 20 years of global progress and challenges. p 299. (2020).
  4. Debboun, M. & Strickman, D. Insect repellents and associated personal protection for a reduction in human disease. Med. Vet. Entomol. 27, 1–9 (2013). [PMID: 22624654]
  5. EPA. DEET (2021). https://www.epa.gov/insect-repellents/deet
  6. Afify, A., Betz, J. F., Riabinina, O., Lahondère, C. & Potter, C. J. Commonly used insect repellents hide human odors from anopheles mosquitoes. Curr. Biol. 29, 3669–3680e3665 (2019). [PMID: 31630950]
  7. DeGennaro, M. The mysterious multi-modal repellency of DEET. Fly (Austin) 9, 45–51 (2015). [PMID: 26252744]
  8. Boeckh, J. et al. Acylated 1,3-aminopropanols as repellents against bloodsucking arthropods. Pestic Sci. 48, 359–373 (1996). [DOI: 10.1002/(SICI)1096-9063(199612)48]
  9. Leal, W. S. & Uchida, K. Application of GC-EAD to the determination of mosquito repellents derived from a plant, Cymbopogon citratus. J. Asia-Pacif Entomol. 1, 217–221 (1998). [DOI: 10.1016/S1226-8615(08)60022-9]
  10. Syed, Z. & Leal, W. S. Mosquitoes smell and avoid the insect repellent DEET. PNAS 105, 13598–13603 (2008). [PMID: 18711137]
  11. Stanczyk, N. M., Brookfield, J. F. Y., Ignell, R., Logan, J. G. & Field, L. M. Behavioral insensitivity to DEET in Aedes aegypti is a genetically determined trait residing in changes in sensillum function. PNAS 107, 8575–8580 (2010). [PMID: 20439757]
  12. Lee, Y., Kim, S. H. & Montell, C. Avoiding DEET through insect gustatory receptors. Neuron 67, 555–561 (2010). [PMID: 20797533]
  13. Bohbot, J. D. & Dickens, J. C. Insect repellents: Modulators of mosquito odorant receptor activity. PLoS One 5, e12138 (2010). [PMID: 20725637]
  14. Bohbot, J. D. et al. Multiple activities of insect repellents on odorant receptors in mosquitoes. Med. Vet. Entomol. 25, 436–444 (2011). [PMID: 21395633]
  15. DeGennaro, M. et al. Orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 498, 487–491 (2013). [PMID: 23719379]
  16. Matthews, B. J., McBride, C. S., DeGennaro, M., Despo, O. & Vosshall, L. B. The neurotranscriptome of the Aedes aegypti mosquito. BMC Genom. 17, 32 (2016). [DOI: 10.1186/s12864-015-2239-0]
  17. Dennis, E. J., Goldman, O. V. & Vosshall, L. B. Aedes aegypti mosquitoes use their legs to sense DEET on contact. Curr. Biol. 29, 1551–1556e1555 (2019). [PMID: 31031114]
  18. Ditzen, M., Pellegrino, M. & Vosshall, L. B. Insect odorant receptors are molecular targets of the insect repellent DEET. Science 319, 1838–1842 (2008). [PMID: 18339904]
  19. Davis, E. E. & Sokolove, P. G. Lactic acid-sensitive receptors on the antennae of the mosquito, Aedes aegypti. J. Comp. Physiol. 105, 43–54 (1976). [DOI: 10.1007/BF01380052]
  20. Pellegrino, M., Steinbach, N., Stensmyr, M. C., Hansson, B. S. & Vosshall, L. B. A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor. Nature 478, 511–514 (2011). [PMID: 21937991]
  21. Dogan, E. B., Ayres, J. W. & Rossignol, P. A. Behavioural mode of action of DEET: Inhibition of lactic acid attraction. Med. Vet. Entomol. 13, 97–100 (1999). [PMID: 10194755]
  22. European Commission. Technical Notes for Guidance: Insecticides, acaricides and products to control other arthropods (PT 18) and repellents and attractants (only concerning arthropods) (PT19) (2012).
  23. USEPA. Product Performance Test Guidelines OPPTS 810.3700: Insect Repellents to be Applied to Human Skin (2010).
  24. WHO. Guidelines for Efficacy Testing of Mosquito Repellents for Human skin. (World Health Organization, 2009).
  25. Frances, S. P., Mackenzie, D. O., Klun, J. A. & Debboun, M. Laboratory and field evaluation of SS220 and DEET against mosquitoes in Queensland, Australia. J. Am. Mosq. Control Assoc. 25, 174–178 (2009). [PMID: 19653499]
  26. Obermayr, U., Rose, A. & Geier, M. A novel test cage with an air ventilation system as an alternative to conventional cages for the efficacy testing of mosquito repellents. J. Med. Entomol. 47, 1116–1122 (2010). [PMID: 21175061]
  27. Colucci, B. & Müller, P. Evaluation of standard field and laboratory methods to compare protection times of the topical repellents PMD and DEET. Sci. Rep. 8, 12578 (2018).
  28. Trongtokit, Y., Curtis, C. F. & Rongsriyam, Y. Efficacy of repellent products against caged and free flying Anopheles stephensi mosquitoes. Southeast. Asian J. Trop. Med. Public. Health 36, 1423–1431 (2005). [PMID: 16610644]
  29. Moreno-Gómez, M., Bueno-Marí, R., Drago, A. & Miranda, M. A. From the field to the laboratory: Quantifying outdoor mosquito landing rate to better evaluate topical repellents. J. Med. Entomol. 58, 1287–1297 (2021). [PMID: 33458778]
  30. Barnard, D. R., Posey, K. H., Smith, D. & Schreck, C. E. Mosquito density, biting rate and cage size effects on repellent tests. Med. Vet. Entomol. 12, 39–45 (1998). [PMID: 9513937]
  31. McMeniman, C. J., Corfas, R. A., Matthews, B. J., Ritchie, S. A. & Vosshall, L. B. Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction to humans. Cell 156, 1060–1071 (2014). [PMID: 24581501]
  32. Parker, J. E. A. et al. Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact. Sci. Rep. 5, 13392 (2015). [PMID: 26323965]
  33. Hawkes, F. & Gibson, G. Seeing is believing: The nocturnal malarial mosquito Anopheles coluzzii responds to visual host-cues when odour indicates a host is nearby. Parasit. Vectors 9, 320 (2016). [PMID: 27260254]
  34. Murray, G. P. D. et al. Barrier bednets target malaria vectors and expand the range of usable insecticides. Nat. Microbiol. 5, 40–47 (2020). [PMID: 31792426]
  35. Mouhamadou, C. S. et al. Development of an insecticide-free trapping bednet to control mosquitoes and manage resistance in malaria vector control: A new way of thinking. Insects 11. (2020).
  36. Cribellier, A. et al. Flight behaviour of malaria mosquitoes around odour-baited traps: Capture and escape dynamics. R Soc. Open. Sci. 5, 180246 (2018). [PMID: 30225014]
  37. Owusu, H. F., Chitnis, N. & Müller, P. Insecticide susceptibility of Anopheles mosquitoes changes in response to variations in the larval environment. Sci. Rep. 7, 3667–3667 (2017). [PMID: 28623302]
  38. Roberts, J. R. & Reigart, R. J. Does anything beat DEET? Pediatr. Ann. 33, 444–453 (2004). [DOI: 10.3928/0090-4481-20040701-09]
  39. WHO. Report of the Fourth WHOPES Working Group Meeting: Review of IR3535; KBR3023; (RS)-Methoprene 20% EC, Pyriproxyfen 0.5% GR; and Lambda-Cyhalothrin 2.5% CS. (World Health Organization, 2001).
  40. Carroll, S. P. & Loye, J. PMD, a registered botanical mosquito repellent with DEET-like efficacy. J. Am. Mosq. Control Assoc. 22, 507–514 (2006). [PMID: 17067054]
  41. Trigg, J. K. Evaluation of a eucalyptus-based repellent against Anopheles spp. in Tanzania. J. Am. Mosq. Control Assoc. 12, 243–246 (1996). [PMID: 8827599]
  42. Cilek, J., Petersen, J. & Hallmon, C. E. Comparative efficacy of IR3535 and DEET as repellents against adult Aedes aegypti and Culex quinquefasciatus. J. Am. Mosq. Control Assoc. 20(3), 299–304 (2004).
  43. Costantini, C., Badolo, A. & Ilboudo-Sanogo, E. Field evaluation of the efficacy and persistence of insect repellents DEET, IR3535, and KBR 3023 against Anopheles gambiae complex and other afrotropical vector mosquitoes. Trans. R Soc. Trop. Med. Hyg. 98, 644–652 (2004). [PMID: 15363644]
  44. Gibson, G. A behavioural test of the sensitivity of a nocturnal mosquito, Anopheles gambiae, to dim white, red and infra-red light. Physiol. Entomol. 20, 224–228 (1995). [DOI: 10.1111/j.1365-3032.1995.tb00005.x]
  45. Fry, S. N., Bichsel, M., Müller, P. & Robert, D. Tracking of flying insects using pan-tilt cameras. J. Neurosci. Methods 101, 59–67 (2000). [PMID: 10967362]
  46. Kalman, R. E. A new approach to linear filtering and prediction problems. J. Basic. Eng. 82, 35–45 (1960). [DOI: 10.1115/1.3662552]
  47. Becker, R. A., Chambers, J. M. & Wilks, A. R. The new S Language: A Programming Environment for data Analysis and Graphics. (Wadsworth & Brooks/Cole Advanced Books & Software, 1988).
  48. Ripley, B. D. Stochastic Simulation (John Wiley & Sons, Inc., 1987).
  49. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2022).
  50. Adler, D. & Murdoch, D. Rgl: 3D visualization using opengl (2017). https://github.com/dmurdoch/rgl .
  51. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. 2nd edn (Springer Nature, 2016).
  52. Crenshaw, H. C., Ciampaglio, C. N. & McHenry, M. Analysis of the three-dimensional trajectories of organisms: Estimates of velocity, curvature and torsion from positional information. J. Exp. Biol. 203, 961–982 (2000). [PMID: 10683157]
  53. Müller, P. & Robert, D. A shot in the dark: The silent quest of a free-flying phonotactic fly. J. Exp. Biol. 204, 1039–1052 (2001). [PMID: 11222123]
  54. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. 4th edn (Springer, 2002).
  55. MESS: Miscellaneous Esoteric Statistical Scripts. (2020).
  56. Scott, T. W. et al. Blood-feeding patterns of Aedes aegypti (Diptera: Culicidae) collected in a rural Thai village. J. Med. Entomol. 30, 922–927 (1993). [PMID: 8254642]
  57. Christophers, R. Aedes aegypti (L.). The Yellow Fever Mosquito: Its life History, Bionomics and Structure. (Cambrige University, 1960).
  58. Sinka, M. E. et al. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: Occurrence data, distribution maps and bionomic précis. Parasit. Vectors 4, 89 (2011). [PMID: 21612587]
  59. van Breugel, F., Riffell, J., Fairhall, A. & Dickinson, M. H. Mosquitoes use vision to associate odor plumes with thermal targets. Curr. Biol. 25, 2123–2129 (2015). [PMID: 26190071]
  60. Afify, A. & Potter, C. J. Insect repellents mediate species-specific olfactory behaviours in mosquitoes. Malar. j. 19, 127–127 (2020). [PMID: 32228701]
  61. Kennedy, J. S. The excitant and repellent effects on mosquitos of sub-lethal contacts with DDT. Bull. Entomol. Res. 37, 593–607 (1947). [PMID: 20287803]
  62. Miller, J. R., Siegert, P. Y., Amimo, F. A. & Walker, E. D. Designation of chemicals in terms of the locomotor responses they elicit from insects: An update of Dethier et al. (1960). J. Econ. Entomol. 102, 2056–2060 (2009). [PMID: 20069831]
  63. Hol, F. J., Lambrechts, L. & Prakash, M. BiteOscope, an open platform to study mosquito biting behavior. eLife 9, e56829 (2020). [PMID: 32960173]
  64. Lorenz, L. M. et al. Taxis assays measure directional movement of mosquitoes to olfactory cues. Parasit. Vectors 6, 131 (2013). [PMID: 23642138]
  65. Rodriguez, S. D. et al. Efficacy of some wearable devices compared with spray-on insect repellents for the yellow fever mosquito, Aedes aegypti (L.) (Diptera: Culicidae). J. Insect Sci. 17. (2017).

MeSH Term

Insect Repellents
Animals
Female
Aedes
Anopheles
Insect Bites and Stings
Mosquito Control
Humans
Administration, Topical
DEET

Chemicals

Insect Repellents
DEET

Word Cloud

Created with Highcharts 10.0.0repellentstestarm-in-cageforearmmosquitoestopicalcontactprotectionmosquitobitesrepellent-treatedaction3DvideountreatedflightactivatedisengageupondistanceTopicalprovideefficacyoftenassessedusingestimatesrepellent'stimeexposinghost-seekinginsidecageregularintervalsfirstconfirmedbiteHoweverrevealrepellents'behaviouralmodeunderstandinteractusedinfraredcamerasystemtrackindividualAedesaegyptiAnophelesstephensifemalesexposureeithertested20%m/methanolicsolutionsNN-diethyl-meta-toluamidep-menthane-38-diolicaridinethylbutylacetylaminopropionatefoursubstantiallyreducednumbercomparedtrajectoriesindicatepreventskinmademultiplebriefcontactstreatedconcludecontextundirecteddisplacementsratherrepelledvolatileodorantsinsteadrepellingtrackingDEETEBAAPExcito-repellencyIcaridinMosquitobehaviourMulti-modalPMD

Similar Articles

Cited By