Dendrite injury triggers neuroprotection in Drosophila models of neurodegenerative disease.

Sydney E Prange, Isha N Bhakta, Daria Sysoeva, Grace E Jean, Anjali Madisetti, Hieu H N Le, Ly U Duong, Patrick T Hwu, Jaela G Melton, Katherine L Thompson-Peer
Author Information
  1. Sydney E Prange: Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
  2. Isha N Bhakta: Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
  3. Daria Sysoeva: Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
  4. Grace E Jean: Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
  5. Anjali Madisetti: Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
  6. Hieu H N Le: Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
  7. Ly U Duong: Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
  8. Patrick T Hwu: Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
  9. Jaela G Melton: Center for the Neurobiology of Learning and Memory, Irvine, CA, USA.
  10. Katherine L Thompson-Peer: Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA. ktpeer@uci.edu.

Abstract

Dendrite defects and loss are early cellular alterations observed across neurodegenerative diseases that play a role in early disease pathogenesis. Dendrite degeneration can be modeled by expressing pathogenic polyglutamine disease transgenes in Drosophila neurons in vivo. Here, we show that we can protect against dendrite loss in neurons modeling neurodegenerative polyglutamine diseases through injury to a single primary dendrite branch. We find that this neuroprotection is specific to injury-induced activation of dendrite regeneration: neither injury to the axon nor injury just to surrounding tissues induces this response. We show that the mechanism of this regenerative response is stabilization of the actin (but not microtubule) cytoskeleton. We also demonstrate that this regenerative response may extend to other neurodegenerative diseases. Together, we provide evidence that activating dendrite regeneration pathways has the potential to slow-or even reverse-dendrite loss in neurodegenerative disease.

Keywords

References

  1. Neuron. 2014 Dec 3;84(5):1023-33 [PMID: 25456500]
  2. Neuron. 2022 Jan 5;110(1):36-50.e5 [PMID: 34793694]
  3. PLoS Genet. 2022 Mar 28;18(3):e1010127 [PMID: 35344539]
  4. Cell Rep. 2014 Jan 30;6(2):247-53 [PMID: 24412365]
  5. J Cell Biol. 2019 Jul 1;218(7):2309-2328 [PMID: 31076454]
  6. Genes Dev. 2012 Jul 15;26(14):1612-25 [PMID: 22759636]
  7. Front Cell Neurosci. 2017 Mar 21;11:70 [PMID: 28377694]
  8. Exp Neurol. 2001 Jun;169(2):340-50 [PMID: 11358447]
  9. Cell. 2009 Sep 4;138(5):1005-18 [PMID: 19737525]
  10. Acta Neuropathol Commun. 2016 Aug 04;4(1):77 [PMID: 27488828]
  11. Development. 2023 May 15;150(10): [PMID: 37184296]
  12. Glia. 2005 Jan 1;49(1):59-72 [PMID: 15390099]
  13. PLoS Biol. 2020 Mar 12;18(3):e3000657 [PMID: 32163406]
  14. Elife. 2013 Apr 16;2:e00362 [PMID: 23599891]
  15. Nat Genet. 1999 Dec;23(4):425-8 [PMID: 10581028]
  16. Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):3224-9 [PMID: 14978262]
  17. Pediatr Neurol. 2021 Oct;123:67-76 [PMID: 34399111]
  18. Genes Dev. 2016 Aug 1;30(15):1776-89 [PMID: 27542831]
  19. Mol Biol Cell. 2010 Mar 1;21(5):767-77 [PMID: 20053676]
  20. Cell. 2006 Nov 17;127(4):697-708 [PMID: 17110330]
  21. Front Mol Biosci. 2022 Nov 28;9:1060796 [PMID: 36518845]
  22. Acta Neuropathol Commun. 2023 Nov 16;11(1):182 [PMID: 37974279]
  23. Nat Rev Mol Cell Biol. 2022 Jan;23(1):56-73 [PMID: 34518687]
  24. Mol Neurodegener. 2013 Nov 22;8:35 [PMID: 24267573]
  25. Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16795-800 [PMID: 21930920]
  26. Cell. 1998 Jun 12;93(6):939-49 [PMID: 9635424]
  27. Cell Mol Neurobiol. 2004 Feb;24(1):109-22 [PMID: 15049515]
  28. Elife. 2016 Jun 07;5: [PMID: 27268300]
  29. Int J Mol Sci. 2020 Oct 05;21(19): [PMID: 33027950]
  30. Curr Biol. 2008 Jul 8;18(13):992-1000 [PMID: 18595703]
  31. Cell. 2018 Aug 23;174(5):1216-1228.e19 [PMID: 30057111]
  32. Nature. 2008 Jun 19;453(7198):1107-11 [PMID: 18449188]
  33. Genes Dev. 2018 Mar 1;32(5-6):402-414 [PMID: 29563183]
  34. iScience. 2020 Nov 27;23(12):101865 [PMID: 33319182]
  35. Development. 2011 Mar;138(6):1153-60 [PMID: 21343367]
  36. Cells. 2024 Jan 18;13(2): [PMID: 38247879]
  37. Brain Res. 1988 Jul 5;455(1):148-52 [PMID: 3416180]
  38. Neuron. 2012 Jun 21;74(6):961-3 [PMID: 22726825]
  39. Neural Dev. 2017 Aug 17;12(1):15 [PMID: 28818097]
  40. J Comp Neurol. 1989 Sep 15;287(3):373-92 [PMID: 2570794]
  41. Annu Rev Neurosci. 2010;33:349-78 [PMID: 20367247]
  42. Mol Biol Cell. 2008 Oct;19(10):4122-9 [PMID: 18667536]
  43. Prog Neurobiol. 2016 Jun;141:61-82 [PMID: 27095262]
  44. Development. 2002 Jun;129(12):2867-78 [PMID: 12050135]
  45. Nat Genet. 2014 Feb;46(2):152-60 [PMID: 24336168]
  46. BMB Rep. 2017 Jan;50(1):5-11 [PMID: 27502014]
  47. Proc Natl Acad Sci U S A. 2016 May 17;113(20):5736-41 [PMID: 27140644]
  48. Neural Regen Res. 2023 Sep;18(9):1952-1953 [PMID: 36926717]
  49. Neural Regen Res. 2023 Dec;18(12):2757-2761 [PMID: 37449641]
  50. Biomed Rep. 2022 Apr;16(4):27 [PMID: 35251614]
  51. Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16848-52 [PMID: 16275900]
  52. Nat Rev Genet. 2009 Jun;10(6):359-70 [PMID: 19434080]
  53. Dement Geriatr Cogn Disord. 1999;10 Suppl 1:55-60 [PMID: 10436342]
  54. Brain. 2018 Jul 1;141(7):1963-1980 [PMID: 29931057]
  55. Hum Mol Genet. 2014 May 15;23(10):2629-38 [PMID: 24368417]
  56. Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9673-8 [PMID: 21606367]
  57. Neural Dev. 2007 Apr 30;2:7 [PMID: 17470283]
  58. Neuron. 2012 Jun 21;74(6):1015-22 [PMID: 22726832]
  59. J Huntingtons Dis. 2020;9(3):217-229 [PMID: 32925079]
  60. Neurology. 1974 Jan;24(1):49-54 [PMID: 4272494]
  61. Neurology. 2020 May 5;94(18):e1908-e1915 [PMID: 32265233]
  62. Curr Biol. 2000 Nov 16;10(22):1467-70 [PMID: 11102812]
  63. J Biol Chem. 2013 Nov 29;288(48):34460-9 [PMID: 24106274]
  64. Annu Rev Pathol. 2016 May 23;11:221-50 [PMID: 26907528]
  65. J Neurosci. 2010 Mar 3;30(9):3175-83 [PMID: 20203177]
  66. Cell Syst. 2018 Jul 25;7(1):28-40.e4 [PMID: 29936182]
  67. Front Physiol. 2021 Nov 25;12:715443 [PMID: 34899367]
  68. Dev Biol. 2022 Aug;488:114-119 [PMID: 35644253]
  69. Front Neurosci. 2017 Nov 01;11:609 [PMID: 29163013]
  70. Eur J Neurosci. 2004 May;19(10):2799-807 [PMID: 15147313]
  71. Neuron. 1998 Sep;21(3):633-42 [PMID: 9768849]
  72. Curr Opin Neurobiol. 2012 Oct;22(5):805-11 [PMID: 22575709]
  73. Nat Rev Neurosci. 2013 Aug;14(8):536-50 [PMID: 23839597]
  74. Cell Mol Neurobiol. 2023 Jul;43(5):1867-1884 [PMID: 36352320]
  75. Mol Biol Cell. 2020 Sep 1;31(19):2125-2138 [PMID: 32673176]
  76. Eur J Med Chem. 2021 Dec 5;225:113742 [PMID: 34388381]
  77. Acta Neuropathol. 2015 Jul;130(1):1-19 [PMID: 26063233]
  78. Hum Mol Genet. 2021 Sep 15;30(19):1797-1810 [PMID: 34077532]
  79. Cells. 2021 Oct 16;10(10): [PMID: 34685757]
  80. Genesis. 2002 Sep-Oct;34(1-2):146-51 [PMID: 12324971]
  81. Genetics. 2003 Nov;165(3):1433-41 [PMID: 14668392]
  82. Life Sci. 2024 May 1;344:122562 [PMID: 38492921]
  83. Front Neurol. 2018 Apr 09;9:228 [PMID: 29686647]
  84. Brain Res Bull. 2014 Apr;103:18-28 [PMID: 24333192]
  85. Apoptosis. 2009 Aug;14(8):1008-20 [PMID: 19373559]
  86. Nature. 2000 Nov 2;408(6808):101-6 [PMID: 11081516]
  87. Neuron. 2010 Aug 12;67(3):373-80 [PMID: 20696376]
  88. Cell. 2003 Mar 21;112(6):805-18 [PMID: 12654247]
  89. Hum Mol Genet. 2008 Feb 1;17(3):376-90 [PMID: 17984172]
  90. J Neurosci. 2013 Aug 7;33(32):12997-3009 [PMID: 23926255]
  91. J Neurosci. 2015 Jan 14;35(2):643-7 [PMID: 25589758]
  92. Clin Neuropathol. 1988 Jan-Feb;7(1):22-8 [PMID: 2453316]
  93. J Neurosci. 2012 Mar 7;32(10):3301-5 [PMID: 22399752]
  94. Cell Death Differ. 2000 Oct;7(10):861-5 [PMID: 11279530]
  95. PLoS Biol. 2021 Dec 13;19(12):e3001399 [PMID: 34898601]
  96. Front Cell Neurosci. 2022 Sep 22;16:982074 [PMID: 36212686]
  97. Elife. 2019 Aug 13;8: [PMID: 31405451]
  98. Acta Neuropathol. 1973 Jul 11;25(2):103-19 [PMID: 4727735]
  99. Redox Biol. 2023 Jul;63:102725 [PMID: 37257276]
  100. Neuroscience. 2005;132(3):741-54 [PMID: 15837135]
  101. Neurobiol Dis. 2017 Sep;105:328-335 [PMID: 28012891]
  102. Cells. 2020 Feb 04;9(2): [PMID: 32033020]
  103. J Neurosci. 1991 Dec;11(12):3877-87 [PMID: 1836019]
  104. Med Sci (Paris). 2023 Apr;39(4):313-316 [PMID: 37094259]
  105. Hum Mol Genet. 2023 Aug 7;32(16):2656-2668 [PMID: 37369041]
  106. Exp Neurol. 1979 Feb;63(2):336-46 [PMID: 437007]
  107. Dev Biol. 1997 Nov 1;191(1):103-17 [PMID: 9356175]
  108. Annu Rev Pathol. 2009;4:315-42 [PMID: 18842101]
  109. Nat Aging. 2021 Sep;1(9):760-768 [PMID: 35146440]
  110. J Neurosci. 1997 Oct 1;17(19):7385-95 [PMID: 9295384]
  111. Science. 2020 Aug 14;369(6505):787-793 [PMID: 32675289]
  112. Eur J Pharmacol. 2022 Jun 15;925:175001 [PMID: 35525310]

Grants

  1. P30 CA062203/NCI NIH HHS
  2. P50 GM076516/NIGMS NIH HHS
  3. R00 NS097627/NINDS NIH HHS
  4. S10 OD032327/NIH HHS

MeSH Term

Animals
Dendrites
Neurodegenerative Diseases
Disease Models, Animal
Neuroprotection
Drosophila
Drosophila melanogaster
Peptides
Neurons

Chemicals

polyglutamine
Peptides

Word Cloud

Created with Highcharts 10.0.0injuryneurodegenerativediseaseDendritedendritelossdiseasesDrosophilaresponseearlycanpolyglutamineneuronsshowneuroprotectionregenerativedefectscellularalterationsobservedacrossplayrolepathogenesisdegenerationmodeledexpressingpathogenictransgenesvivoprotectmodelingsingleprimarybranchfindspecificinjury-inducedactivationregeneration:neitheraxonjustsurroundingtissuesinducesmechanismstabilizationactinmicrotubulecytoskeletonalsodemonstratemayextendTogetherprovideevidenceactivatingregenerationpathwayspotentialslow-orevenreverse-dendritetriggersmodelsAxonNeurodegenerativeNeuroprotectionRegeneration

Similar Articles

Cited By