Synergistic effects of antimicrobial components of the human-derived composite amnion-chorion membrane on bacterial growth.

Alexandra Su Brummerhop, Chun-Teh Lee, Robin Weltman, Gena D Tribble, Ransome van der Hoeven, Yulun Chiu, Jianming Hong, Bing-Yan Wang
Author Information
  1. Alexandra Su Brummerhop: Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States.
  2. Chun-Teh Lee: Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States.
  3. Robin Weltman: Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States.
  4. Gena D Tribble: Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States.
  5. Ransome van der Hoeven: Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States.
  6. Yulun Chiu: Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
  7. Jianming Hong: Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States.
  8. Bing-Yan Wang: Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States.

Abstract

Introduction: The human-derived amnion-chorion membrane (ACM) has endogenous antimicrobial properties, which are important for preventing the colonization and survival of oral bacteria on exposed membranes. This project aimed to decipher the underlying mechanism by identifying the components of ACM that confer antibacterial properties. In addition, the antimicrobial efficacy of these identified components on oral bacteria was assessed.
Methods: Four antimicrobial proteins, histone H2A/H2B, cathelicidin LL-37, lactoferrin, and lysozyme, were identified via mass spectrometry in ACM. These proteins were then assessed for their efficacy in killing Challis. Log-phased bacterial cells were cultured with the commercially available proteins that were identified in ACM, either individually or in combination, at different concentrations. After incubation for 8 or 24 hours, the bacteria were stained with a live/dead viability kit and analyzed via confocal microscopy.
Results: The combination of these proteins effectively killed in a dose-dependent fashion after 8 or 24 hours of incubation. When each protein was tested individually, it killed at a much lower efficacy relative to the combinations. The synergistic effects of the antimicrobial protein combinations were also observed in both the viable cell count recovery and minimum inhibitory concentration assays.
Discussion: By shedding light on the mechanisms in the ACM's antimicrobial property, this study may raise more awareness of the potential benefit of utilization of a membrane with endogenous antimicrobial properties in regeneration surgeries.

Keywords

References

  1. Molecules. 2020 Dec 08;25(24): [PMID: 33302377]
  2. Periodontol 2000. 1993 Feb;1:26-35 [PMID: 9673206]
  3. Biochemistry (Mosc). 2001 Jan;66(1):1-7 [PMID: 11240386]
  4. Clin Sci (Lond). 2006 Jan;110(1):21-35 [PMID: 16336202]
  5. J Dent Res. 2016 Apr;95(4):365-71 [PMID: 26747422]
  6. J Immunol. 2002 Mar 1;168(5):2356-64 [PMID: 11859126]
  7. Future Microbiol. 2016;11(3):441-53 [PMID: 26939619]
  8. Front Bioeng Biotechnol. 2021 May 31;9:691522 [PMID: 34136474]
  9. Arch Oral Biol. 2015 Jun;60(6):863-74 [PMID: 25841068]
  10. Periodontol 2000. 1993 Feb;1:36-45 [PMID: 9673207]
  11. Periodontol 2000. 2009;51:152-80 [PMID: 19878474]
  12. Peptides. 2010 Sep;31(9):1791-8 [PMID: 20600427]
  13. Antimicrob Agents Chemother. 2022 May 17;66(5):e0233921 [PMID: 35446133]
  14. Sci Immunol. 2016 Oct;1(4): [PMID: 27819066]
  15. Front Microbiol. 2017 Oct 10;8:1948 [PMID: 29089928]
  16. Placenta. 2007 Feb-Mar;28(2-3):161-9 [PMID: 16513165]
  17. Oral Dis. 2002 Jan;8(1):12-22 [PMID: 11936451]
  18. J Clin Periodontol. 1998 Feb;25(2):134-44 [PMID: 9495612]
  19. Infect Immun. 2011 Mar;79(3):1124-33 [PMID: 21189319]
  20. Biometals. 2004 Jun;17(3):189-96 [PMID: 15222464]
  21. Int J Antimicrob Agents. 2019 Feb;53(2):143-151 [PMID: 30315918]
  22. Am J Obstet Gynecol. 2007 Mar;196(3):255.e1-6 [PMID: 17346544]
  23. J Periodontal Res. 1987 May;22(3):252-4 [PMID: 2955111]
  24. Int J Dent. 2019 Jul 11;2019:1269534 [PMID: 31379946]
  25. Monogr Oral Sci. 2014;24:40-51 [PMID: 24862593]
  26. Adv Wound Care (New Rochelle). 2017 Feb 1;6(2):43-53 [PMID: 28224047]
  27. J Reprod Infertil. 2017 Apr-Jun;18(2):218-224 [PMID: 28868246]
  28. Biochim Biophys Acta. 2016 Mar;1858(3):546-66 [PMID: 26556394]
  29. Int J Oral Maxillofac Implants. 2017 Sep 22;33(1):41���50 [PMID: 28938030]
  30. J Periodontol. 1993 Nov;64 Suppl 11S:1116-1128 [PMID: 29539699]
  31. Clin Oral Implants Res. 2018 Mar;29(3):328-338 [PMID: 29368353]
  32. Int J Biomater. 2015;2015:274082 [PMID: 26770199]
  33. J Periodontol. 2001 Apr;72(4):512-6 [PMID: 11338304]
  34. Sci Rep. 2017 Oct 20;7(1):13722 [PMID: 29057887]
  35. Cryobiology. 2013 Dec;67(3):293-8 [PMID: 23988559]
  36. Front Immunol. 2013 Jul 03;4:143 [PMID: 23840194]
  37. J Periodontol. 2002 Aug;73(8):843-51 [PMID: 12211492]
  38. Sci Rep. 2017 Dec 5;7(1):17022 [PMID: 29208979]
  39. Placenta. 2013 Jun;34(6):480-5 [PMID: 23562109]
  40. Virulence. 2011 Sep-Oct;2(5):435-44 [PMID: 21778817]
  41. Reproduction. 2011 Jun;141(6):725-35 [PMID: 21474606]
  42. J Endotoxin Res. 2007;13(6):317-38 [PMID: 18182460]
  43. Biomolecules. 2017 Dec 05;7(4): [PMID: 29206168]
  44. PLoS One. 2018 Aug 22;13(8):e0201819 [PMID: 30133470]
  45. Eur J Obstet Gynecol Reprod Biol. 2001 Feb;94(2):224-9 [PMID: 11165729]
  46. Sci Rep. 2019 Oct 30;9(1):15600 [PMID: 31666625]
  47. Front Immunol. 2022 Nov 21;13:1030610 [PMID: 36479112]
  48. Eur Cell Mater. 2008 Apr 29;15:88-99 [PMID: 18446690]
  49. Crit Rev Microbiol. 2003;29(3):191-214 [PMID: 14582617]

MeSH Term

Humans
Amnion
Streptococcus gordonii
Chorion
Cathelicidins
Drug Synergism
Microbial Viability
Antimicrobial Cationic Peptides
Anti-Bacterial Agents
Muramidase
Lactoferrin
Histones
Microbial Sensitivity Tests
Antimicrobial Peptides
Anti-Infective Agents

Chemicals

Cathelicidins
Antimicrobial Cationic Peptides
Anti-Bacterial Agents
Muramidase
Lactoferrin
Histones
Antimicrobial Peptides
Anti-Infective Agents

Word Cloud

Created with Highcharts 10.0.0antimicrobialACMproteinsmembranepropertiesbacteriacomponentsefficacyidentifiedhuman-derivedamnion-chorionendogenousoralassessedviabacterialindividuallycombinationincubation824hourskilledproteincombinationseffectsregenerationIntroduction:importantpreventingcolonizationsurvivalexposedmembranesprojectaimeddecipherunderlyingmechanismidentifyingconferantibacterialadditionMethods:FourhistoneH2A/H2BcathelicidinLL-37lactoferrinlysozymemassspectrometrykillingChallisLog-phasedcellsculturedcommerciallyavailableeitherdifferentconcentrationsstainedlive/deadviabilitykitanalyzedconfocalmicroscopyResults:effectivelydose-dependentfashiontestedmuchlowerrelativesynergisticalsoobservedviablecellcountrecoveryminimuminhibitoryconcentrationassaysDiscussion:sheddinglightmechanismsACM'spropertystudymayraiseawarenesspotentialbenefitutilizationsurgeriesSynergisticcompositegrowthamnionpeptideschorionguidedtissueGTRperiodontal

Similar Articles

Cited By