Three Novel Spider Genomes Unveil Spidroin Diversification and Hox Cluster Architecture: Ryuthela nishihirai (Liphistiidae), Uloborus plumipes (Uloboridae) and Cheiracanthium punctorium (Cheiracanthiidae).

Yannis Sch��neberg, Tracy Lynn Audisio, Alexander Ben Hamadou, Martin Forman, Ji���� Kr��l, Tereza Ko����nkov��, Eva L��znarov��, Christoph Mayer, Lenka Prokopcov��, Henrik Krehenwinkel, Stefan Prost, Susan Kennedy
Author Information
  1. Yannis Sch��neberg: Department of Biogeography, Trier University, Trier, Germany. ORCID
  2. Tracy Lynn Audisio: Evolutionary Genomics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan. ORCID
  3. Alexander Ben Hamadou: LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany. ORCID
  4. Martin Forman: Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Prague 2, Czech Republic. ORCID
  5. Ji���� Kr��l: Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic. ORCID
  6. Tereza Ko����nkov��: Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Prague 2, Czech Republic.
  7. Eva L��znarov��: Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Prague 2, Czech Republic. ORCID
  8. Christoph Mayer: Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany. ORCID
  9. Lenka Prokopcov��: Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Prague 2, Czech Republic.
  10. Henrik Krehenwinkel: Department of Biogeography, Trier University, Trier, Germany. ORCID
  11. Stefan Prost: Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland. ORCID
  12. Susan Kennedy: Department of Biogeography, Trier University, Trier, Germany. ORCID

Abstract

Spiders are a hyperdiverse taxon and among the most abundant predators in nearly all terrestrial habitats. Their success is often attributed to key developments in their evolution such as silk and venom production and major apomorphies such as a whole-genome duplication. Resolving deep relationships within the spider tree of life has been historically challenging, making it difficult to measure the relative importance of these novelties for spider evolution. Whole-genome data offer an essential resource in these efforts, but also for functional genomic studies. Here, we present de novo assemblies for three spider species: Ryuthela nishihirai (Liphistiidae), a representative of the ancient Mesothelae, the suborder that is sister to all other extant spiders; Uloborus plumipes (Uloboridae), a cribellate orbweaver whose phylogenetic placement is especially challenging; and Cheiracanthium punctorium (Cheiracanthiidae), which represents only the second family to be sequenced in the hyperdiverse Dionycha clade. These genomes fill critical gaps in the spider tree of life. Using these novel genomes along with 25 previously published ones, we examine the evolutionary history of spidroin gene and structural hox cluster diversity. Our assemblies provide critical genomic resources to facilitate deeper investigations into spider evolution. The near chromosome-level genome of the 'living fossil' R. nishihirai represents an especially important step forward, offering new insights into the origins of spider traits.

Keywords

References

  1. Mol Ecol Resour. 2022 Jan;22(1):375-390 [PMID: 34268885]
  2. Bioinformatics. 2011 Mar 15;27(6):764-70 [PMID: 21217122]
  3. Curr Biol. 2018 May 7;28(9):1489-1497.e5 [PMID: 29706520]
  4. Sci Data. 2024 Jan 24;11(1):121 [PMID: 38267470]
  5. Genome Res. 2002 Aug;12(8):1269-76 [PMID: 12176934]
  6. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5229-34 [PMID: 19289848]
  7. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  8. Mob DNA. 2015 Jun 02;6:11 [PMID: 26045719]
  9. PeerJ. 2024 Jan 5;12:e16505 [PMID: 38192598]
  10. Nat Ecol Evol. 2022 Feb;6(2):195-206 [PMID: 34949821]
  11. Open Biol. 2021 Dec;11(12):210242 [PMID: 34932907]
  12. Evolution. 1998 Apr;52(2):403-414 [PMID: 28568335]
  13. Science. 2000 Nov 10;290(5494):1151-5 [PMID: 11073452]
  14. Arthropod Struct Dev. 2020 Nov;59:100997 [PMID: 33039753]
  15. Int J Biol Macromol. 2021 Dec 1;192:258-271 [PMID: 34627845]
  16. Mol Phylogenet Evol. 2019 Nov;140:106573 [PMID: 31374259]
  17. Cladistics. 2023 Dec;39(6):479-532 [PMID: 37787157]
  18. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  19. Cell Syst. 2016 Jul;3(1):95-8 [PMID: 27467249]
  20. Curr Biol. 2007 Apr 17;17(8):706-10 [PMID: 17379523]
  21. Commun Biol. 2023 Jul 18;6(1):748 [PMID: 37463957]
  22. Bioinformatics. 2018 Jul 15;34(14):2490-2492 [PMID: 29506019]
  23. Bioinformatics. 2013 Oct 1;29(19):2487-9 [PMID: 23842809]
  24. Nat Genet. 2017 Jun;49(6):895-903 [PMID: 28459453]
  25. G3 (Bethesda). 2021 Dec 8;11(12): [PMID: 34849767]
  26. Bioinformatics. 2005 Jun;21 Suppl 1:i351-8 [PMID: 15961478]
  27. J Hered. 2023 Jun 22;114(4):395-403 [PMID: 37042574]
  28. Annu Rev Entomol. 2021 Jan 7;66:225-241 [PMID: 32822555]
  29. Biochemistry. 2006 Mar 14;45(10):3348-56 [PMID: 16519529]
  30. Genome Biol. 2020 Sep 14;21(1):245 [PMID: 32928274]
  31. Nature. 1998 Apr 16;392(6677):723-6 [PMID: 9565034]
  32. Mol Biol Evol. 2018 Sep 1;35(9):2240-2253 [PMID: 29924328]
  33. Naturwissenschaften. 2017 Apr;104(3-4):30 [PMID: 28289774]
  34. G3 (Bethesda). 2024 Aug 7;14(8): [PMID: 38885085]
  35. Mol Ecol Resour. 2022 Aug;22(6):2333-2348 [PMID: 35182027]
  36. Nat Genet. 2023 Feb;55(2):301-311 [PMID: 36658436]
  37. Sci Adv. 2022 Oct 14;8(41):eabo6043 [PMID: 36223455]
  38. Wellcome Open Res. 2023 May 16;8:221 [PMID: 39473876]
  39. Sci Rep. 2019 Jun 10;9(1):8380 [PMID: 31182776]
  40. Gigascience. 2021 Feb 16;10(2): [PMID: 33590861]
  41. Gigascience. 2022 Dec 28;12: [PMID: 36762707]
  42. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  43. BMC Bioinformatics. 2018 Nov 29;19(1):460 [PMID: 30497373]
  44. Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9451-9457 [PMID: 32300014]
  45. Evol Dev. 1999 Sep-Oct;1(2):77-89 [PMID: 11324031]
  46. Nature. 1997 Aug 14;388(6643):682-6 [PMID: 9262403]
  47. PLoS One. 2022 Jun 6;17(6):e0268660 [PMID: 35666730]
  48. Integr Comp Biol. 2023 Sep 15;63(3):825-842 [PMID: 37263789]
  49. Annu Rev Entomol. 2017 Jan 31;62:443-460 [PMID: 27959639]
  50. BMC Biol. 2017 Jul 31;15(1):62 [PMID: 28756775]
  51. Methods Mol Biol. 2019;1962:227-245 [PMID: 31020564]
  52. Cell Syst. 2016 Jul;3(1):99-101 [PMID: 27467250]
  53. BMC Biol. 2007 Oct 26;5:47 [PMID: 17963489]
  54. Nat Commun. 2020 Mar 18;11(1):1432 [PMID: 32188846]
  55. PLoS One. 2014 Aug 20;9(8):e105067 [PMID: 25140992]
  56. Wellcome Open Res. 2023 Jun 22;8:271 [PMID: 37766855]
  57. Bioinformatics. 2023 Jan 1;39(1): [PMID: 36525368]
  58. Mol Biol Evol. 2020 May 1;37(5):1530-1534 [PMID: 32011700]
  59. G3 (Bethesda). 2020 Apr 9;10(4):1361-1374 [PMID: 32071071]
  60. BMC Bioinformatics. 2010 Aug 18;11:431 [PMID: 20718988]
  61. Nat Methods. 2021 Feb;18(2):170-175 [PMID: 33526886]
  62. Gigascience. 2020 Sep 1;9(9): [PMID: 32893860]
  63. Gigascience. 2022 May 25;11: [PMID: 35639632]
  64. Nat Methods. 2020 Feb;17(2):155-158 [PMID: 31819265]
  65. Bioinformatics. 2013 Apr 15;29(8):1072-5 [PMID: 23422339]
  66. Proc Natl Acad Sci U S A. 2021 Aug 3;118(31): [PMID: 34312234]
  67. Wellcome Open Res. 2024 Mar 1;9:105 [PMID: 39015616]
  68. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  69. Ann Bot. 2012 Jan;109(1):65-75 [PMID: 22021815]
  70. Mol Biol Evol. 2023 Dec 1;40(12): [PMID: 37935059]
  71. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  72. Nat Methods. 2017 Jun;14(6):587-589 [PMID: 28481363]
  73. Nat Commun. 2014 May 06;5:3765 [PMID: 24801114]
  74. Sci Rep. 2019 Feb 28;9(1):3001 [PMID: 30816146]
  75. Wellcome Open Res. 2022 Dec 22;7:311 [PMID: 36874575]
  76. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  77. Genes (Basel). 2019 Feb 12;10(2): [PMID: 30759892]
  78. Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):E8396-E8405 [PMID: 27956617]
  79. Philos Trans R Soc Lond B Biol Sci. 2017 Feb 5;372(1713): [PMID: 27994121]

Grants

  1. LTAUSA 19142/Ministry of Education, Youth and Sports of the Czech Republic
  2. SVV 260568/Ministry of Education, Youth and Sports of the Czech Republic
  3. 336449/University of Oulu, Profi6 "Biodiverse Anthropocenes"
  4. /PacBio SMRT Sequencing Grant
  5. 447342662/Deutsche Forschungsgemeinschaft

MeSH Term

Animals
Spiders
Phylogeny
Genome
Silk
Animals, Poisonous

Chemicals

Silk

Word Cloud

Created with Highcharts 10.0.0spiderevolutionnishihiraihyperdiversesilktreelifechallenginggenomicassembliesRyuthelaLiphistiidaeMesothelaeUloborusplumipesUloboridaeespeciallyCheiracanthiumpunctoriumCheiracanthiidaerepresentsgenomescriticalSpiderstaxonamongabundantpredatorsnearlyterrestrialhabitatssuccessoftenattributedkeydevelopmentsvenomproductionmajorapomorphieswhole-genomeduplicationResolvingdeeprelationshipswithinhistoricallymakingdifficultmeasurerelativeimportancenoveltiesWhole-genomedataofferessentialresourceeffortsalsofunctionalstudiespresentdenovothreespecies:representativeancientsubordersisterextantspiderscribellateorbweaverwhosephylogeneticplacementsecondfamilysequencedDionychacladefillgapsUsingnovelalong25previouslypublishedonesexamineevolutionaryhistoryspidroingenestructuralhoxclusterdiversityprovideresourcesfacilitatedeeperinvestigationsnearchromosome-levelgenome'livingfossil'RimportantstepforwardofferingnewinsightsoriginstraitsThreeNovelSpiderGenomesUnveilSpidroinDiversificationHoxClusterArchitecture:Hi���Cassemblychromosomekaryotype

Similar Articles

Cited By