Evolution of Reactive Organic Compounds and Their Potential Health Risk in Wildfire Smoke.

Havala O T Pye, Lu Xu, Barron H Henderson, Demetrios Pagonis, Pedro Campuzano-Jost, Hongyu Guo, Jose L Jimenez, Christine Allen, T Nash Skipper, Hannah S Halliday, Benjamin N Murphy, Emma L D'Ambro, Paul O Wennberg, Bryan K Place, Forwood C Wiser, V Faye McNeill, Eric C Apel, Donald R Blake, Matthew M Coggon, John D Crounse, Jessica B Gilman, Georgios I Gkatzelis, Thomas F Hanisco, L Gregory Huey, Joseph M Katich, Aaron Lamplugh, Jakob Lindaas, Jeff Peischl, Jason M St Clair, Carsten Warneke, Glenn M Wolfe, Caroline Womack
Author Information
  1. Havala O T Pye: Office of Research and Development, US Environmental Protection Agency, Durham, North Carolina 27711, United States. ORCID
  2. Lu Xu: Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States. ORCID
  3. Barron H Henderson: Office of Air and Radiation, US Environmental Protection Agency, Durham, North Carolina 27711, United States. ORCID
  4. Demetrios Pagonis: Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States. ORCID
  5. Pedro Campuzano-Jost: Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States. ORCID
  6. Hongyu Guo: Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States.
  7. Jose L Jimenez: Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States.
  8. Christine Allen: GDIT, Durham, North Carolina 27709, United States.
  9. T Nash Skipper: Office of Research and Development, US Environmental Protection Agency, Durham, North Carolina 27711, United States.
  10. Hannah S Halliday: Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States. ORCID
  11. Benjamin N Murphy: Office of Research and Development, US Environmental Protection Agency, Durham, North Carolina 27711, United States. ORCID
  12. Emma L D'Ambro: Office of Research and Development, US Environmental Protection Agency, Durham, North Carolina 27711, United States. ORCID
  13. Paul O Wennberg: California Institute of Technology, Pasadena, California 91125, United States. ORCID
  14. Bryan K Place: Office of Research and Development, US Environmental Protection Agency, Durham, North Carolina 27711, United States.
  15. Forwood C Wiser: Columbia University, New York, New York 10027, United States.
  16. V Faye McNeill: Columbia University, New York, New York 10027, United States. ORCID
  17. Eric C Apel: National Center for Atmospheric Research, Boulder, Colorado 80301, United States.
  18. Donald R Blake: University of California Irvine, Irvine, California 92697, United States.
  19. Matthew M Coggon: NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States. ORCID
  20. John D Crounse: California Institute of Technology, Pasadena, California 91125, United States. ORCID
  21. Jessica B Gilman: NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States. ORCID
  22. Georgios I Gkatzelis: Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States. ORCID
  23. Thomas F Hanisco: NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States. ORCID
  24. L Gregory Huey: Georgia Institute of Technology, Atlanta, Georgia 30332, United States. ORCID
  25. Joseph M Katich: Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States. ORCID
  26. Aaron Lamplugh: Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States. ORCID
  27. Jakob Lindaas: Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80523, United States.
  28. Jeff Peischl: Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States. ORCID
  29. Jason M St Clair: NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States. ORCID
  30. Carsten Warneke: NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States. ORCID
  31. Glenn M Wolfe: NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States. ORCID
  32. Caroline Womack: NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States. ORCID

Abstract

Wildfires are an increasing source of emissions into the air, with health effects modulated by the abundance and toxicity of individual species. In this work, we estimate reactive organic compounds (ROC) in western U.S. wildland forest fire smoke using a combination of observations from the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) field campaign and predictions from the Community Multiscale Air Quality (CMAQ) model. Standard emission inventory methods capture 40-45% of the estimated ROC mass emitted, with estimates of primary organic aerosol particularly low (5-8��). Downwind, gas-phase species abundances in molar units reflect the production of fragmentation products such as formaldehyde and methanol. Mass-based units emphasize larger compounds, which tend to be unidentified at an individual species level, are less volatile, and are typically not measured in the gas phase. Fire emissions are estimated to total 1250 �� 60 g��C of ROC per kg��C of CO, implying as much carbon is emitted as ROC as is emitted as CO. Particulate ROC has the potential to dominate the cancer and noncancer risk of long-term exposure to inhaled smoke, and better constraining these estimates will require information on the toxicity of particulate ROC from forest fires.

Keywords

References

  1. Environ Health Perspect. 2016 Sep;124(9):1334-43 [PMID: 27082891]
  2. Geohealth. 2018 Aug 03;2(8):229-247 [PMID: 32159016]
  3. Geosci Model Dev. 2021 Jun 7;14(6):3407-3420 [PMID: 34336142]
  4. Environ Health Perspect. 2012 May;120(5):695-701 [PMID: 22456494]
  5. Environ Res. 2021 Feb;193:110568 [PMID: 33278469]
  6. Environ Health Perspect. 2019 Mar;127(3):37006 [PMID: 30875246]
  7. Environ Sci Technol. 2019 Apr 16;53(8):4003-4019 [PMID: 30830764]
  8. Environ Sci Technol. 2012 Dec 18;46(24):13093-102 [PMID: 23163290]
  9. Geohealth. 2021 Sep 01;5(9):e2021GH000482 [PMID: 34541439]
  10. Environ Res. 2015 Jan;136:120-32 [PMID: 25460628]
  11. Sci Adv. 2020 Feb 05;6(6):eaay8967 [PMID: 32076652]
  12. Environ Sci Technol. 2022 Jun 21;56(12):7564-7577 [PMID: 35579536]
  13. Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29469-29477 [PMID: 33148807]
  14. Lancet Planet Health. 2022 May;6(5):e400-e409 [PMID: 35550079]
  15. Inhal Toxicol. 2007 Jan;19(1):67-106 [PMID: 17127644]
  16. Environ Sci Technol. 2019 Sep 3;53(17):10007-10022 [PMID: 31365241]
  17. Environ Res. 2019 Jun;173:462-468 [PMID: 30981117]
  18. Environ Sci Technol. 2023 Oct 3;57(39):14648-14660 [PMID: 37703172]
  19. Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10473-8 [PMID: 25002466]
  20. Science. 2006 Aug 18;313(5789):940-3 [PMID: 16825536]
  21. Environ Sci Technol. 2023 Nov 7;57(44):17011-17021 [PMID: 37874964]
  22. Nature. 2023 Oct;622(7984):761-766 [PMID: 37730996]
  23. Atmos Chem Phys. 2023 Aug 21;23(16):9173-9190 [PMID: 39434854]
  24. Data Brief. 2023 Mar 02;47:109022 [PMID: 36942100]
  25. Geohealth. 2021 Sep 01;5(9):e2021GH000457 [PMID: 34504989]
  26. Environ Sci Technol. 2020 Oct 6;54(19):11838-11847 [PMID: 32857515]
  27. Environ Sci Technol. 2022 Oct 4;56(19):13607-13621 [PMID: 36134580]
  28. Atmos Chem Phys. 2023 Oct 25;23(20):13469-13483 [PMID: 38516559]
  29. Atmos Environ (1994). 2011 Aug;45(26):4329-4343 [PMID: 32362761]
  30. Sci Total Environ. 2018 Jan 1;610-611:802-809 [PMID: 28826118]
  31. ACS Earth Space Chem. 2024 Feb 5;8(2):381-392 [PMID: 39440258]

Grants

  1. EPA999999/Intramural EPA

MeSH Term

Wildfires
Smoke
Air Pollutants
Humans
Organic Chemicals
Air Pollution

Chemicals

Smoke
Air Pollutants
Organic Chemicals

Word Cloud

Created with Highcharts 10.0.0ROCorganiccompoundsairspeciessmokeemittedemissionstoxicityindividualreactiveforestFireAirQualityestimatedestimatesaerosolunitsvolatileCOWildfiresincreasingsourcehealtheffectsmodulatedabundanceworkestimatewesternUSwildlandfireusingcombinationobservations2019InfluenceRegionalGlobalEnvironmentsFIREX-AQfieldcampaignpredictionsCommunityMultiscaleCMAQmodelStandardemissioninventorymethodscapture40-45%massprimaryparticularlylow5-8��Downwindgas-phaseabundancesmolarreflectproductionfragmentationproductsformaldehydemethanolMass-basedemphasizelargertendunidentifiedlevellesstypicallymeasuredgasphasetotal1250��60g��Cperkg��CimplyingmuchcarbonParticulatepotentialdominatecancernoncancerrisklong-termexposureinhaledbetterconstrainingwillrequireinformationparticulatefiresEvolutionReactiveOrganicCompoundsPotentialHealthRiskWildfireSmokequalityhazardouspollutantswildfires

Similar Articles

Cited By