John J Tanner, Juan Ji, Alexandra N Bogner, Gary K Scott, Sagar M Patel, Javier Seravalli, Kent S Gates, Christopher C Benz, Donald F Becker
The flavoenzyme proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the oxidation of l-proline to Δ-pyrroline-5-carboxylate. The enzyme is a target for chemical probe discovery because of its role in the metabolism of certain cancer cells. -propargylglycine is the first and best characterized mechanism-based covalent inactivator of PRODH. This compound consists of a recognition module (glycine) that directs the inactivator to the active site and an alkyne warhead that reacts with the FAD after oxidative activation, leading to covalent modification of the FAD N5 atom. Here we report structural and kinetic data on analogs of -propargylglycine with the goals of understanding the initial docking step of the inactivation mechanism and to test the allyl group as a warhead. The crystal structures of PRODH complexed with unreactive analogs in which N is replaced by S show how the recognition module mimics the substrate proline by forming ion pairs with conserved arginine and lysine residues. Further, the C atom adjacent to the alkyne warhead is optimally positioned for hydride transfer to the FAD, providing the structural basis for the first bond-breaking step of the inactivation mechanism. The structures also suggest new strategies for designing improved -propargylglycine analogs. -allylglycine, which consists of a glycine recognition module and allyl warhead, is shown to be a covalent inactivator; however, it is less efficient than -propargylglycine in both enzyme inactivation and cellular assays. Crystal structures of the -allylglycine-inactivated enzyme are consistent with covalent modification of the N5 by propanal.
Amino Acids. 2021 Dec;53(12):1927-1939
[PMID:
34089390]
Biochemistry. 2007 Jan 16;46(2):483-91
[PMID:
17209558]
ACS Chem Biol. 2020 Apr 17;15(4):936-944
[PMID:
32159324]
Biochim Biophys Acta Mol Basis Dis. 2020 Mar 1;1866(3):165633
[PMID:
31821850]
Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1204-14
[PMID:
23793146]
Arch Biochem Biophys. 2021 Feb 15;698:108727
[PMID:
33333077]
Biochemistry. 2018 Jun 26;57(25):3433-3444
[PMID:
29648801]
Biochim Biophys Acta Mol Basis Dis. 2024 Jan;1870(1):166848
[PMID:
37586438]
Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3389-94
[PMID:
24550478]
J Biol Chem. 1962 Oct;237:3245-9
[PMID:
14033211]
Nat Commun. 2017 May 11;8:15267
[PMID:
28492237]
Amino Acids. 2021 Dec;53(12):1967-1975
[PMID:
34825974]
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):282-92
[PMID:
21460446]
Biochem J. 2015 Mar 1;466(2):273-81
[PMID:
25697095]
Acta Crystallogr D Biol Crystallogr. 2009 Oct;65(Pt 10):1074-80
[PMID:
19770504]
Biochemistry. 2012 Dec 18;51(50):10099-108
[PMID:
23151026]
Biochemistry. 2014 Aug 12;53(31):5150-61
[PMID:
25046425]
ACS Chem Biol. 2021 Nov 19;16(11):2268-2279
[PMID:
34542291]
Front Oncol. 2012 Jun 21;2:60
[PMID:
22737668]
J Biol Chem. 2016 Nov 11;291(46):24065-24075
[PMID:
27679491]
Protein Eng Des Sel. 2022 Feb 17;35:
[PMID:
36448708]
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501
[PMID:
20383002]
Mol Cancer Ther. 2019 Aug;18(8):1374-1385
[PMID:
31189611]
Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):352-67
[PMID:
22505256]
SLAS Discov. 2017 Jan;22(1):3-20
[PMID:
27703080]
Methods Enzymol. 1995;249:240-83
[PMID:
7791614]
FEBS J. 2017 Sep;284(18):3029-3049
[PMID:
28710792]
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32
[PMID:
20124692]
Biochemistry. 2010 Jan 26;49(3):560-9
[PMID:
19994913]
Biochemistry. 2008 May 20;47(20):5573-80
[PMID:
18426222]