Comparative ecological analysis and predictive modeling of tick-borne pathogens.

William Manley, Tam Tran, Melissa Prusinski, Dustin Brisson
Author Information
  1. William Manley: Department of Biology, University of Pennsylvania, Philadelphia, PA, USA. ORCID
  2. Tam Tran: Department of Biology, University of Pennsylvania, Philadelphia, PA, USA. ORCID
  3. Melissa Prusinski: New York State Department of Health, Albany, NY, USA. ORCID
  4. Dustin Brisson: Department of Biology, University of Pennsylvania, Philadelphia, PA, USA. ORCID

Abstract

Tick-borne diseases constitute the predominant vector-borne health threat in North America. Recent observations have noted a significant expansion in the range of the black-legged tick (Ixodes scapularis Say, Acari: Ixodidae), alongside a rise in the incidence of diseases caused by its transmitted pathogens: Borrelia burgdorferi Johnson (Spirochaetales: Spirochaetaceae), Babesia microti Starcovici (Piroplasmida: Babesiidae), and Anaplasma phagocytophilium Zhu (Rickettsiales: Anaplasmataceae), the causative agents of Lyme disease, babesiosis, and anaplasmosis, respectively. Prior research identified environmental features that influence the ecological dynamics of I. scapularis and B. burgdorferi that can be used to predict the distribution and abundance of these organisms, and thus Lyme disease risk. In contrast, there is a paucity of research into the environmental determinants of B. microti and A. phagocytophilium. Here, we use over a decade of surveillance data to model the impact of environmental features on the infection prevalence of these increasingly common human pathogens in ticks across New York State (NYS). Our findings reveal a consistent northward and westward expansion of B. microti in NYS from 2009 to 2019, while the range of A. phagocytophilum varied at fine spatial scales. We constructed biogeographic models using data from over 650 site-year visits and encompassing more than 250 environmental variables to accurately forecast infection prevalence for each pathogen to a future year that was not included in model training. Several environmental features were identified to have divergent effects on the pathogens, revealing potential ecological differences governing their distribution and abundance. These validated biogeographic models have applicability for disease prevention efforts.

Keywords

References

  1. Annu Rev Entomol. 1985;30:439-60 [PMID: 3882050]
  2. J R Soc Interface. 2021 Nov;18(184):20210610 [PMID: 34814732]
  3. J Med Entomol. 2014 Jan;51(1):226-36 [PMID: 24605473]
  4. Parasit Vectors. 2018 Jan 23;11(1):54 [PMID: 29361971]
  5. Microbiologyopen. 2019 May;8(5):e00719 [PMID: 30239169]
  6. Emerg Infect Dis. 2014 Feb;20(2):225-31 [PMID: 24447577]
  7. J Clin Invest. 2010 Sep;120(9):3179-90 [PMID: 20739755]
  8. Clin Infect Dis. 2007 Jul 15;45 Suppl 1:S45-51 [PMID: 17582569]
  9. Proc Biol Sci. 2020 Dec 23;287(1941):20202278 [PMID: 33352074]
  10. Emerg Infect Dis. 2023 Mar;29(3): [PMID: 36823761]
  11. Science. 1982 Jun 18;216(4552):1317-9 [PMID: 7043737]
  12. Emerg Infect Dis. 2021 Aug;27(8):2154-2162 [PMID: 34287128]
  13. J Med Entomol. 2018 Oct 25;55(6):1496-1508 [PMID: 30020499]
  14. Int J Parasitol. 2021 Mar;51(4):311-320 [PMID: 33359203]
  15. Parasitology. 2004;129 Suppl:S3-14 [PMID: 15938502]
  16. Parasit Vectors. 2013 Apr 23;6:119 [PMID: 23617899]
  17. Infect Dis Clin North Am. 2015 Jun;29(2):357-70 [PMID: 25999229]
  18. Proc Biol Sci. 2023 Jun 28;290(2001):20230642 [PMID: 37357860]
  19. Int J Environ Res Public Health. 2018 Mar 09;15(3): [PMID: 29522469]
  20. Clin Lab Med. 2017 Jun;37(2):317-340 [PMID: 28457353]
  21. Ticks Tick Borne Dis. 2019 Aug;10(5):970-980 [PMID: 31101553]
  22. PLoS Biol. 2006 Jun;4(6):e145 [PMID: 16669698]
  23. Emerg Infect Dis. 2002 Mar;8(3):289-97 [PMID: 11927027]
  24. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6209-14 [PMID: 8650245]
  25. J Med Entomol. 2003 Mar;40(2):179-84 [PMID: 12693846]
  26. Diagn Microbiol Infect Dis. 2020 Feb;96(2):114958 [PMID: 31813641]
  27. Genetics. 2010 Nov;186(3):983-95 [PMID: 20739713]
  28. J Med Entomol. 2005 Sep;42(5):899-908 [PMID: 16363174]
  29. Vector Borne Zoonotic Dis. 2008 Aug;8(4):491-503 [PMID: 18429696]
  30. J Med Entomol. 2021 Nov 9;58(6):2453-2466 [PMID: 34289040]
  31. Am J Trop Med Hyg. 2014 Aug;91(2):302-9 [PMID: 24865688]
  32. J Med Entomol. 2014 Jul;51(4):777-84 [PMID: 25118409]
  33. J Appl Ecol. 2022 Nov;59(11):2779-2789 [PMID: 36632519]
  34. Vector Borne Zoonotic Dis. 2002 Fall;2(3):125-36 [PMID: 12737542]
  35. Parasitol Res. 2008 Dec;103 Suppl 1:S109-16 [PMID: 19030892]
  36. J Med Microbiol. 2020 Jun;69(6):781-791 [PMID: 32478654]
  37. Emerg Infect Dis. 2005 Oct;11(10):1604-6 [PMID: 16318705]
  38. Vet World. 2015 Mar;8(3):301-15 [PMID: 27047089]
  39. Am J Trop Med Hyg. 2008 May;78(5):806-10 [PMID: 18458317]
  40. Emerg Infect Dis. 2002 May;8(5):467-72 [PMID: 11996680]
  41. MMWR Morb Mortal Wkly Rep. 2012 Jul 13;61(27):505-9 [PMID: 22785341]
  42. Ticks Tick Borne Dis. 2022 Nov;13(6):102040 [PMID: 36137391]
  43. Arch Intern Med. 1998 Oct 26;158(19):2149-54 [PMID: 9801183]
  44. Emerg Infect Dis. 2005 Mar;11(3):476-8 [PMID: 15757571]
  45. Ecology. 2007 Jan;88(1):243-51 [PMID: 17489472]
  46. Ecosphere. 2012 Oct 3;3(10): [PMID: 24371541]
  47. Proc Biol Sci. 2008 Jan 22;275(1631):227-35 [PMID: 18029304]
  48. J Clin Microbiol. 1994 Mar;32(3):589-95 [PMID: 8195363]
  49. Am J Trop Med Hyg. 2012 Jun;86(6):1062-71 [PMID: 22665620]
  50. JAMA. 1991 Sep 4;266(9):1230-6 [PMID: 1870248]
  51. Ticks Tick Borne Dis. 2022 Jan;13(1):101833 [PMID: 34600416]
  52. Am J Trop Med Hyg. 1988 Jul;39(1):105-9 [PMID: 3400797]
  53. J Med Entomol. 2025 Jan 13;62(1):199-206 [PMID: 39439315]
  54. J Wildl Dis. 1997 Jul;33(3):466-73 [PMID: 9249691]
  55. Am J Trop Med Hyg. 2003 Apr;68(4):431-6 [PMID: 12875292]
  56. Vector Borne Zoonotic Dis. 2022 Jul;22(7):361-369 [PMID: 35727121]
  57. PLoS Comput Biol. 2009 Sep;5(9):e1000520 [PMID: 19779555]
  58. Ecosphere. 2016 Mar;7(3): [PMID: 27088044]
  59. Evolution. 2015 Jul;69(7):1678-89 [PMID: 26149959]
  60. J Med Entomol. 2016 Mar;53(2):349-86 [PMID: 26783367]
  61. J Anim Ecol. 2008 Jul;77(4):802-13 [PMID: 18397250]
  62. JAMA. 1994 Jul 20;272(3):212-8 [PMID: 8022040]

Grants

  1. U01 CK000107/NCEZID CDC HHS
  2. AI142572/NIH HHS
  3. 1012376/Burroughs Welcome Fund
  4. U01CK000509/CDC HHS
  5. R01 AI142572/NIAID NIH HHS
  6. R01 AI097137/NIAID NIH HHS

MeSH Term

Animals
Borrelia burgdorferi
Ixodes
Babesia microti
Anaplasma phagocytophilum
Tick-Borne Diseases
Models, Biological
Lyme Disease

Word Cloud

Created with Highcharts 10.0.0environmentaldiseasemicrotifeaturesecologicalBpathogensdiseasesexpansionrangescapularisburgdorferiphagocytophiliumLymeresearchidentifieddistributionabundancedatamodelinfectionprevalenceticksNYSbiogeographicmodelsTick-borneconstitutepredominantvector-bornehealththreatNorthAmericaRecentobservationsnotedsignificantblack-leggedtickIxodesSayAcari:Ixodidaealongsideriseincidencecausedtransmittedpathogens:BorreliaJohnsonSpirochaetales:SpirochaetaceaeBabesiaStarcoviciPiroplasmida:BabesiidaeAnaplasmaZhuRickettsiales:AnaplasmataceaecausativeagentsbabesiosisanaplasmosisrespectivelyPriorinfluencedynamicscanusedpredictorganismsthusriskcontrastpaucitydeterminantsusedecadesurveillanceimpactincreasinglycommonhumanacrossNewYorkStatefindingsrevealconsistentnorthwardwestward20092019phagocytophilumvariedfinespatialscalesconstructedusing650site-yearvisitsencompassing250variablesaccuratelyforecastpathogenfutureyearincludedtrainingSeveraldivergenteffectsrevealingpotentialdifferencesgoverningvalidatedapplicabilitypreventioneffortsComparativeanalysispredictivemodelingtick-borneecologymachinelearningvector

Similar Articles

Cited By