Limited Migration From Physiological Refugia Constrains the Rescue of Native Gastropods Facing an Invasive Predator.

Mathilde Salamon, Louis Astorg, Antoine Paccard, Frederic Chain, Andrew P Hendry, Alison M Derry, Rowan D H Barrett
Author Information
  1. Mathilde Salamon: Universit�� du Qu��bec �� Montr��al Montreal Quebec Canada. ORCID
  2. Louis Astorg: Universit�� du Qu��bec �� Montr��al Montreal Quebec Canada.
  3. Antoine Paccard: McGill Genome Centre Montreal Quebec Canada.
  4. Frederic Chain: University of Massachusetts Lowell Lowell Massachusetts USA. ORCID
  5. Andrew P Hendry: McGill University Montreal Quebec Canada.
  6. Alison M Derry: Universit�� du Qu��bec �� Montr��al Montreal Quebec Canada. ORCID
  7. Rowan D H Barrett: McGill University Montreal Quebec Canada.

Abstract

Biological invasions have caused the loss of freshwater biodiversity worldwide. The interplay between adaptive responses and demographic characteristics of populations impacted by invasions is expected to be important for their resilience, but the interaction between these factors is poorly understood. The freshwater gastropod is native to the Upper St. Lawrence River and distributed along a water calcium concentration gradient within which high-calcium habitats are impacted by an invasive predator fish (, round goby), whereas low-calcium habitats provide refuges for the gastropods from the invasive predator. Our objectives were to (1) test for adaptation of to the invasive predator and the low-calcium habitats, and (2) investigate if migrant gastropods could move from refuge populations to declining invaded populations (i.e., demographic rescue), which could also help maintain genetic diversity through gene flow (i.e., genetic rescue). We conducted a laboratory reciprocal transplant of wild F sourced from the two habitat types (high calcium/invaded and low calcium/refuge) to measure adult survival and fecundity in home and transplant treatments of water calcium concentration (low/high) and round goby cue (present/absent). We then applied pooled whole-genome sequencing of 12 gastropod populations from across the calcium/invasion gradient. We identified patterns of life-history traits and genetic differentiation across the habitats that are consistent with local adaptation to low-calcium concentrations in refuge populations and to round goby predation in invaded populations. We also detected restricted gene flow from the low-calcium refugia towards high-calcium invaded populations, implying that the potential for demographic and genetic rescue is limited by natural dispersal. Our study highlights the importance of considering the potentially conflicting effects of local adaptation and gene flow for the resilience of populations coping with invasive predators.

Keywords

Associated Data

Dryad | 10.5061/dryad.rxwdbrvjq

References

  1. PLoS Biol. 2022 Jan 10;20(1):e3001469 [PMID: 35007278]
  2. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  3. Trends Ecol Evol. 2015 Jan;30(1):42-9 [PMID: 25435267]
  4. Bioinformatics. 2017 Jul 15;33(14):2202-2204 [PMID: 28369201]
  5. Evol Appl. 2020 Nov 06;14(3):634-652 [PMID: 33767740]
  6. Ecol Evol. 2021 May 02;11(11):6053-6065 [PMID: 34141202]
  7. Mol Ecol. 2013 Jul;22(14):3766-79 [PMID: 23730833]
  8. Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6878-6883 [PMID: 30867292]
  9. Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11261-11265 [PMID: 27638204]
  10. PLoS One. 2012;7(11):e48588 [PMID: 23152785]
  11. Proc Natl Acad Sci U S A. 2022 Jan 4;119(1): [PMID: 34930821]
  12. Evol Appl. 2017 May 11;10(6):531-550 [PMID: 28616062]
  13. Proc Biol Sci. 2004 Feb 7;271 Suppl 3:S67-70 [PMID: 15101422]
  14. Nat Commun. 2017 Oct 20;8(1):1071 [PMID: 29057865]
  15. Mol Ecol. 2016 May;25(10):2144-64 [PMID: 26946320]
  16. Nat Rev Genet. 2014 Nov;15(11):749-63 [PMID: 25246196]
  17. Evolution. 2008 Feb;62(2):316-36 [PMID: 17999721]
  18. Nat Rev Genet. 2024 Mar;25(3):165-183 [PMID: 37863940]
  19. Mol Ecol. 2013 Dec;22(24):5983-99 [PMID: 24128305]
  20. Sci Rep. 2017 Aug 17;7(1):8618 [PMID: 28819230]
  21. Genetics. 1997 Apr;145(4):1219-28 [PMID: 9093870]
  22. Evolution. 2007 Sep;61(9):2229-43 [PMID: 17767592]
  23. Mol Ecol. 2010 Nov;19(22):5043-60 [PMID: 21040048]
  24. Mol Biol Evol. 2016 Feb;33(2):591-3 [PMID: 26545922]
  25. Methods Ecol Evol. 2017 Dec;8(12):1899-1909 [PMID: 29263778]
  26. Mol Biol Evol. 2021 Sep 27;38(10):4647-4654 [PMID: 34320186]
  27. Mol Ecol. 2014 Dec;23(23):5649-62 [PMID: 25256562]
  28. Science. 2011 Jun 10;332(6035):1327-30 [PMID: 21659606]
  29. Proc Natl Acad Sci U S A. 2022 Sep 20;119(38):e2201521119 [PMID: 36095205]
  30. PLoS Comput Biol. 2020 Nov 12;16(11):e1008325 [PMID: 33180771]
  31. PLoS Genet. 2009 Oct;5(10):e1000695 [PMID: 19851460]
  32. Nat Commun. 2019 Sep 18;10(1):4240 [PMID: 31534121]
  33. J Evol Biol. 2008 Nov;21(6):1460-9 [PMID: 18681916]
  34. Glob Chang Biol. 2016 Jan;22(1):151-63 [PMID: 26212892]
  35. Genetics. 2010 Aug;185(4):1411-23 [PMID: 20516501]
  36. Can J Zool. 1971 May;49(5):759-66 [PMID: 5557907]
  37. Nat Rev Genet. 2013 Nov;14(11):807-20 [PMID: 24136507]
  38. Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10557-62 [PMID: 26240320]
  39. Nat Commun. 2016 Aug 23;7:12485 [PMID: 27549569]
  40. Nat Ecol Evol. 2020 Aug;4(8):1084-1094 [PMID: 32572217]
  41. Biol Rev Camb Philos Soc. 2020 Dec;95(6):1812-1837 [PMID: 32737956]
  42. PLoS One. 2011 Jan 06;6(1):e15925 [PMID: 21253599]
  43. Gigascience. 2020 Mar 1;9(3): [PMID: 32112099]
  44. Trends Ecol Evol. 2014 Sep;29(9):521-30 [PMID: 25038023]
  45. Mol Ecol. 2022 Feb;31(4):1028-1043 [PMID: 34902193]
  46. Mol Ecol Resour. 2022 May;22(4):1394-1416 [PMID: 34837462]
  47. Mol Ecol. 2021 Oct;30(20):4991-5008 [PMID: 34379852]
  48. Conserv Biol. 2000 Dec 18;14(6):1881-1892 [PMID: 35701934]
  49. Mol Biol Evol. 2020 Aug 1;37(8):2369-2385 [PMID: 32302396]
  50. Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23643-23651 [PMID: 32883880]
  51. Mol Ecol. 2016 Jan;25(2):454-69 [PMID: 26671840]
  52. Genetics. 2018 Sep;210(1):315-330 [PMID: 30061425]
  53. Evol Appl. 2016 Feb 04;9(7):879-91 [PMID: 27468306]
  54. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  55. J Evol Biol. 2007 May;20(3):1015-27 [PMID: 17465912]
  56. Curr Biol. 2020 Feb 3;30(3):517-522.e5 [PMID: 31902732]
  57. Evolution. 2018 May 9;: [PMID: 29741234]
  58. Nat Commun. 2020 Jul 17;11(1):3608 [PMID: 32681028]
  59. Bioinformatics. 2011 Dec 15;27(24):3435-6 [PMID: 22025480]
  60. Mol Ecol. 2023 Aug;32(15):4151-4164 [PMID: 37212171]
  61. Genetics. 2015 Dec;201(4):1555-79 [PMID: 26482796]
  62. Comp Biochem Physiol A Mol Integr Physiol. 2002 Nov;133(3):421-37 [PMID: 12443904]
  63. Nat Ecol Evol. 2017 Dec;1(12):1862-1869 [PMID: 29109470]
  64. Proc Natl Acad Sci U S A. 2019 May 14;116(20):9919-9924 [PMID: 31036667]
  65. Ecol Lett. 2006 Mar;9(3):357-74 [PMID: 16958902]

Word Cloud

Similar Articles

Cited By