Advice from artificial intelligence: a review and practical implications.

Julia I Baines, Reeshad S Dalal, Lida P Ponce, Ho-Chun Tsai
Author Information
  1. Julia I Baines: Department of Psychology, George Mason University, Fairfax, VA, United States.
  2. Reeshad S Dalal: Department of Psychology, George Mason University, Fairfax, VA, United States.
  3. Lida P Ponce: Department of Psychology, George Mason University, Fairfax, VA, United States.
  4. Ho-Chun Tsai: Department of Psychology, Illinois Institute of Technology, Chicago, IL, United States.

Abstract

Despite considerable behavioral and organizational research on advice from human advisors, and despite the increasing study of artificial intelligence (AI) in organizational research, workplace-related applications, and popular discourse, an interdisciplinary review of advice from AI (vs. human) advisors has yet to be undertaken. We argue that the increasing adoption of AI to augment human decision-making would benefit from a framework that can characterize such interactions. Thus, the current research invokes judgment and decision-making research on advice from human advisors and uses a conceptual "fit"-based model to: (1) summarize how the characteristics of the AI advisor, human decision-maker, and advice environment influence advice exchanges and outcomes (including informed speculation about the durability of such findings in light of rapid advances in AI technology), (2) delineate future research directions (along with specific predictions), and (3) provide practical implications involving the use of AI advice by human decision-makers in applied settings.

Keywords

References

  1. Am Psychol. 2023 Jan;78(1):36-49 [PMID: 35157476]
  2. J Am Med Inform Assoc. 2012 May-Jun;19(3):407-12 [PMID: 21857024]
  3. Cognition. 2012 Oct;125(1):125-30 [PMID: 22784682]
  4. Hum Factors. 2015 Aug;57(5):895-909 [PMID: 25921302]
  5. J Appl Psychol. 2019 Oct;104(10):1207-1225 [PMID: 30907603]
  6. Psychol Sci. 2006 May;17(5):407-13 [PMID: 16683928]
  7. J Pers Soc Psychol. 2012 Mar;102(3):497-512 [PMID: 22121890]
  8. Science. 2023 Jul 14;381(6654):187-192 [PMID: 37440646]
  9. Cochrane Database Syst Rev. 2013 Nov 12;(11):CD002894 [PMID: 24218045]
  10. Sci Rep. 2023 Jan 25;13(1):1383 [PMID: 36697450]
  11. J Exp Psychol Gen. 2015 Feb;144(1):114-26 [PMID: 25401381]
  12. J Appl Psychol. 2001 Jun;86(3):386-400 [PMID: 11419799]
  13. PLoS One. 2013 Nov 05;8(11):e78433 [PMID: 24223805]
  14. Organ Behav Hum Decis Process. 2001 Mar;84(2):288-307 [PMID: 11277673]
  15. Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2218523120 [PMID: 36730192]
  16. Nat Mach Intell. 2019 May;1(5):206-215 [PMID: 35603010]
  17. Med Decis Making. 2022 Jan;42(1):94-104 [PMID: 33966519]
  18. J Appl Psychol. 2015 Sep;100(5):1527-41 [PMID: 25798552]
  19. Ergonomics. 2012;55(9):1059-72 [PMID: 22799560]
  20. J Med Internet Res. 2020 Mar 6;22(3):e16235 [PMID: 32141837]
  21. Entropy (Basel). 2020 Dec 25;23(1): [PMID: 33375658]
  22. Top Cogn Sci. 2009 Jan;1(1):107-43 [PMID: 25164802]
  23. Soc Netw Anal Min. 2021;11(1):81 [PMID: 34484462]
  24. J Exp Psychol Appl. 2016 Sep;22(3):331-49 [PMID: 27505048]

Word Cloud

Created with Highcharts 10.0.0advicehumanAIresearchadvisorsartificialorganizationalincreasingintelligencereviewdecision-makingadvisorpracticalimplicationsDespiteconsiderablebehavioraldespitestudyworkplace-relatedapplicationspopulardiscourseinterdisciplinaryvsyetundertakenargueadoptionaugmentbenefitframeworkcancharacterizeinteractionsThuscurrentinvokesjudgmentusesconceptual"fit"-basedmodelto:1summarizecharacteristicsdecision-makerenvironmentinfluenceexchangesoutcomesincludinginformedspeculationdurabilityfindingslightrapidadvancestechnology2delineatefuturedirectionsalongspecificpredictions3provideinvolvingusedecision-makersappliedsettingsAdviceintelligence:algorithmanthropomorphizechatbotrobo-advisorvirtualassistant

Similar Articles

Cited By