Solution-Processed Thin Film Transparent Photovoltaics: Present Challenges and Future Development.

Tianle Liu, Munerah M S Almutairi, Jie Ma, Aisling Stewart, Zhaohui Xing, Mengxia Liu, Bo Hou, Yuljae Cho
Author Information
  1. Tianle Liu: UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
  2. Munerah M S Almutairi: School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, Wales, UK.
  3. Jie Ma: UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
  4. Aisling Stewart: School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, Wales, UK.
  5. Zhaohui Xing: Department of Electrical and Computer Engineering, Yale University, New Haven, CT, 06511, USA.
  6. Mengxia Liu: Department of Electrical and Computer Engineering, Yale University, New Haven, CT, 06511, USA. mengxia.liu@yale.edu.
  7. Bo Hou: School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, Wales, UK. houb6@cardiff.ac.uk.
  8. Yuljae Cho: UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China. yuljae.cho@sjtu.edu.cn.

Abstract

Electrical energy is essential for modern society to sustain economic growths. The soaring demand for the electrical energy, together with an awareness of the environmental impact of fossil fuels, has been driving a shift towards the utilization of solar energy. However, traditional solar energy solutions often require extensive spaces for a panel installation, limiting their practicality in a dense urban environment. To overcome the spatial constraint, researchers have developed transparent photovoltaics (TPV), enabling windows and facades in vehicles and buildings to generate electric energy. Current TPV advancements are focused on improving both transparency and power output to rival commercially available silicon solar panels. In this review, we first briefly introduce wavelength- and non-wavelength-selective strategies to achieve transparency. Figures of merit and theoretical limits of TPVs are discussed to comprehensively understand the status of current TPV technology. Then we highlight recent progress in different types of TPVs, with a particular focus on solution-processed thin-film photovoltaics (PVs), including colloidal quantum dot PVs, metal halide perovskite PVs and organic PVs. The applications of TPVs are also reviewed, with emphasis on agrivoltaics, smart windows and facades. Finally, current challenges and future opportunities in TPV research are pointed out.

Keywords

References

  1. Nat Mater. 2014 Sep;13(9):897-903 [PMID: 24997740]
  2. ACS Appl Mater Interfaces. 2020 Jun 17;12(24):27307-27315 [PMID: 32452206]
  3. ACS Appl Mater Interfaces. 2021 Aug 11;13(31):37223-37230 [PMID: 34319690]
  4. ACS Energy Lett. 2018 Apr 13;3(4):1036-1043 [PMID: 29774242]
  5. Nat Commun. 2019 Feb 4;10(1):570 [PMID: 30718494]
  6. Adv Mater. 2021 Mar;33(10):e2006745 [PMID: 33538006]
  7. Adv Sci (Weinh). 2022 Aug;9(23):e2201160 [PMID: 35678107]
  8. Adv Mater. 2023 Sep;35(36):e2301548 [PMID: 37219459]
  9. Sci Rep. 2023 Feb 20;13(1):2965 [PMID: 36806248]
  10. Chem Rev. 2015 Dec 9;115(23):12732-63 [PMID: 26106908]
  11. ACS Nano. 2021 Feb 23;15(2):3376-3386 [PMID: 33512158]
  12. Joule. 2022 Apr 20;6(4):861-883 [PMID: 35711469]
  13. Nanoscale. 2017 Sep 28;9(37):13983-13989 [PMID: 28920127]
  14. Nat Commun. 2024 Aug 10;15(1):6865 [PMID: 39127750]
  15. Adv Mater. 2022 Jun;34(23):e2201604 [PMID: 35365928]
  16. Adv Mater. 2015 Feb 18;27(7):1170-4 [PMID: 25580826]
  17. ACS Appl Mater Interfaces. 2020 Jan 8;12(1):818-825 [PMID: 31820641]
  18. Chem Soc Rev. 2023 Jul 3;52(13):4132-4148 [PMID: 37314457]
  19. J Am Chem Soc. 2009 May 6;131(17):6050-1 [PMID: 19366264]
  20. Adv Mater. 2021 Apr;33(14):e2005410 [PMID: 33656209]
  21. Sci Total Environ. 2024 Jan 15;908:168019 [PMID: 37879488]
  22. Science. 2020 Mar 20;367(6484):1352-1358 [PMID: 32193323]
  23. Adv Mater. 2020 Aug;32(32):e2001621 [PMID: 32613625]
  24. Science. 2023 Apr 28;380(6643):404-409 [PMID: 37104579]
  25. ACS Appl Mater Interfaces. 2023 Aug 9;15(31):37629-37639 [PMID: 37463286]
  26. Adv Mater. 2021 Feb;33(7):e2006435 [PMID: 33393159]
  27. Adv Mater. 2018 May;30(21):e1800855 [PMID: 29633397]
  28. Nat Commun. 2014 Apr 08;5:3586 [PMID: 24710005]
  29. Sci Adv. 2024 Apr 19;10(16):eadn4524 [PMID: 38630830]
  30. Nat Commun. 2020 Jan 21;11(1):310 [PMID: 31964862]
  31. Adv Mater. 2019 Mar;31(10):e1807159 [PMID: 30663145]
  32. Nature. 2002 Dec 19-26;420(6917):800-3 [PMID: 12490945]
  33. Nat Commun. 2019 Jun 7;10(1):2515 [PMID: 31175276]
  34. Nanomicro Lett. 2023 Apr 30;15(1):111 [PMID: 37121964]
  35. Cell. 2016 Jan 14;164(1-2):15-17 [PMID: 26771482]
  36. Angew Chem Int Ed Engl. 2024 Feb 19;63(8):e202317590 [PMID: 38153600]
  37. Angew Chem Int Ed Engl. 2022 May 2;61(19):e202116111 [PMID: 34962046]
  38. Adv Mater. 2019 Oct;31(40):e1903173 [PMID: 31420924]
  39. Adv Mater. 2020 Jul;32(26):e2001906 [PMID: 32449221]
  40. Adv Mater. 2019 Oct;31(43):e1904215 [PMID: 31495980]
  41. Chem Rev. 2021 Feb 24;121(4):2230-2291 [PMID: 33476131]
  42. RSC Adv. 2023 Mar 6;13(11):7380-7384 [PMID: 36891490]
  43. J Am Chem Soc. 2018 Mar 7;140(9):3345-3351 [PMID: 29429335]
  44. Adv Mater. 2024 Apr;36(16):e2312635 [PMID: 38229541]
  45. Adv Mater. 2022 Jun;34(25):e2104661 [PMID: 34699646]
  46. ACS Energy Lett. 2016 Oct 14;1(4):834-839 [PMID: 28035335]
  47. Nat Commun. 2021 Jun 7;12(1):3360 [PMID: 34099690]
  48. Angew Chem Int Ed Engl. 2020 Dec 1;59(49):22230-22237 [PMID: 32840045]
  49. Science. 2016 Oct 7;354(6308):92-95 [PMID: 27846497]
  50. Adv Mater. 2021 Jul;33(29):e2007176 [PMID: 34096115]
  51. Energy Environ Sci. 2016 Jun 8;9(6):1989-1997 [PMID: 27478500]
  52. Nano Lett. 2023 Mar 22;23(6):2277-2286 [PMID: 36913627]
  53. Science. 2022 Feb 25;375(6583):eabj1186 [PMID: 35201885]
  54. Adv Mater. 2024 Aug;36(33):e2406623 [PMID: 38899799]
  55. Science. 2022 Apr 22;376(6591):416-420 [PMID: 35446656]
  56. Chem Soc Rev. 2021 Mar 1;50(4):2696-2736 [PMID: 33409511]
  57. Nat Mater. 2017 Feb;16(2):258-263 [PMID: 27842072]
  58. Nanoscale. 2021 Mar 18;13(10):5243-5250 [PMID: 33650601]
  59. ACS Nano. 2019 Feb 26;13(2):1071-1077 [PMID: 30604955]
  60. Sci Rep. 2023 Feb 2;13(1):1903 [PMID: 36732574]
  61. Nature. 2021 Oct;598(7881):444-450 [PMID: 34671136]
  62. Science. 2013 Oct 18;342(6156):341-4 [PMID: 24136964]
  63. Adv Sci (Weinh). 2022 Aug;9(22):e2201487 [PMID: 35621278]
  64. Nature. 2023 Apr;616(7958):724-730 [PMID: 36796426]
  65. Adv Mater. 2024 May;36(18):e2308750 [PMID: 38289228]
  66. Nature. 2019 Jun;570(7759):96-101 [PMID: 31118515]
  67. Adv Mater. 2019 Sep;31(36):e1901683 [PMID: 31342575]
  68. Nature. 2006 Jul 13;442(7099):180-3 [PMID: 16838017]
  69. Science. 2021 May 7;372(6542):618-622 [PMID: 33958474]
  70. Adv Mater. 2022 Mar;34(10):e2107330 [PMID: 34710251]

Word Cloud

Created with Highcharts 10.0.0energysolarTPVPVsphotovoltaicsTPVstransparentwindowsfacadestransparencycurrentTransparentcellElectricalessentialmodernsocietysustaineconomicgrowthssoaringdemandelectricaltogetherawarenessenvironmentalimpactfossilfuelsdrivingshifttowardsutilizationHowevertraditionalsolutionsoftenrequireextensivespacespanelinstallationlimitingpracticalitydenseurbanenvironmentovercomespatialconstraintresearchersdevelopedenablingvehiclesbuildingsgenerateelectricCurrentadvancementsfocusedimprovingpoweroutputrivalcommerciallyavailablesiliconpanelsreviewfirstbrieflyintroducewavelength-non-wavelength-selectivestrategiesachieveFiguresmerittheoreticallimitsdiscussedcomprehensivelyunderstandstatustechnologyhighlightrecentprogressdifferenttypesparticularfocussolution-processedthin-filmincludingcolloidalquantumdotmetalhalideperovskiteorganicapplicationsalsoreviewedemphasisagrivoltaicssmartFinallychallengesfutureopportunitiesresearchpointedoutSolution-ProcessedThinFilmPhotovoltaics:PresentChallengesFutureDevelopmentBuilding-integratedEmergingmaterialsSolution-processablesemiconductors

Similar Articles

Cited By