Analog reservoir computing via ferroelectric mixed phase boundary transistors.

Jangsaeng Kim, Eun Chan Park, Wonjun Shin, Ryun-Han Koo, Chang-Hyeon Han, He Young Kang, Tae Gyu Yang, Youngin Goh, Kilho Lee, Daewon Ha, Suraj S Cheema, Jae Kyeong Jeong, Daewoong Kwon
Author Information
  1. Jangsaeng Kim: Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea. ORCID
  2. Eun Chan Park: Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
  3. Wonjun Shin: Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul, 08826, Republic of Korea. ORCID
  4. Ryun-Han Koo: Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
  5. Chang-Hyeon Han: Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
  6. He Young Kang: Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
  7. Tae Gyu Yang: Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
  8. Youngin Goh: Semiconductor Research and Development Center, Samsung Electronics, Hwaseong, Republic of Korea.
  9. Kilho Lee: Semiconductor Research and Development Center, Samsung Electronics, Hwaseong, Republic of Korea.
  10. Daewon Ha: Semiconductor Research and Development Center, Samsung Electronics, Hwaseong, Republic of Korea.
  11. Suraj S Cheema: Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. sscheema@mit.edu. ORCID
  12. Jae Kyeong Jeong: Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea. jkjeong1@hanyang.ac.kr. ORCID
  13. Daewoong Kwon: Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea. dw79kwon@hanyang.ac.kr. ORCID

Abstract

Analog reservoir computing (ARC) systems have attracted attention owing to their efficiency in processing temporal information. However, the distinct functionalities of the system components pose challenges for hardware implementation. Herein, we report a fully integrated ARC system that leverages material versatility of the ferroelectric-to-mixed phase boundary (MPB) hafnium zirconium oxides integrated onto indium-gallium-zinc oxide thin-film transistors (TFTs). MPB-based TFTs (MPBTFTs) with nonlinear short-term memory characteristics are utilized for physical reservoirs and artificial neuron, while nonvolatile ferroelectric TFTs mimic synaptic behavior for readout networks. Furthermore, double-gate configuration of MPBTFTs enhances reservoir state differentiation and state expansion for physical reservoir and processes both excitatory and inhibitory pulses for neuronal functionality with minimal hardware burden. The seamless integration of ARC components on a single wafer executes complex real-world time-series predictions with a low normalized root mean squared error of 0.28. The material-device co-optimization proposed in this study paves the way for the development of area- and energy-efficient ARC systems.

References

  1. Nat Commun. 2020 May 15;11(1):2439 [PMID: 32415218]
  2. Nat Commun. 2017 Dec 19;8(1):2204 [PMID: 29259188]
  3. Nat Commun. 2011 Sep 13;2:468 [PMID: 21915110]
  4. Sci Adv. 2021 Aug 18;7(34): [PMID: 34407948]
  5. Nat Commun. 2022 Apr 19;13(1):2074 [PMID: 35440122]
  6. Nat Commun. 2022 Nov 3;13(1):6590 [PMID: 36329017]
  7. Nature. 2020 Jan;577(7792):641-646 [PMID: 31996818]
  8. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  9. Nat Commun. 2023 Nov 7;14(1):7176 [PMID: 37935751]
  10. Nat Commun. 2014 Mar 24;5:3541 [PMID: 24662967]
  11. Nat Commun. 2022 Feb 4;13(1):699 [PMID: 35121735]
  12. IEEE Trans Electron Devices. 2017;IEDM 2017: [PMID: 31080272]
  13. Adv Mater. 2023 Sep;35(37):e2205381 [PMID: 36222391]
  14. Nat Commun. 2024 Mar 6;15(1):2044 [PMID: 38448419]
  15. Mater Horiz. 2024 Jan 22;11(2):499-509 [PMID: 37966888]
  16. Adv Mater. 2020 Feb;32(7):e1905764 [PMID: 31850652]
  17. Neural Netw. 2007 Apr;20(3):391-403 [PMID: 17517492]
  18. Adv Sci (Weinh). 2024 Jul;11(26):e2308460 [PMID: 38709909]
  19. Sci Rep. 2012;2:287 [PMID: 22371825]
  20. Sci Adv. 2021 May 14;7(20): [PMID: 33990331]
  21. Nature. 2017 Jul 26;547(7664):428-431 [PMID: 28748930]
  22. Adv Sci (Weinh). 2022 Feb;9(6):e2104076 [PMID: 34964551]
  23. Adv Mater. 2021 Dec;33(48):e2102688 [PMID: 34533867]
  24. Lancet Infect Dis. 2020 May;20(5):533-534 [PMID: 32087114]
  25. Nature. 2015 May 7;521(7550):61-4 [PMID: 25951284]
  26. Nat Mater. 2022 Feb;21(2):195-202 [PMID: 34608285]
  27. Sci Rep. 2012;2:514 [PMID: 22816038]
  28. IEEE Trans Neural Netw. 2011 Jan;22(1):131-44 [PMID: 21075721]
  29. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554-8 [PMID: 6953413]
  30. Nat Commun. 2023 Jun 16;14(1):3585 [PMID: 37328514]
  31. Adv Sci (Weinh). 2023 Nov;10(32):e2302770 [PMID: 37759405]
  32. Nanoscale. 2023 May 11;15(18):8366-8376 [PMID: 37092534]
  33. Nat Commun. 2021 Jan 18;12(1):408 [PMID: 33462233]
  34. Nanoscale. 2021 Oct 8;13(38):16258-16266 [PMID: 34549741]
  35. Nat Commun. 2021 Sep 30;12(1):5727 [PMID: 34593800]
  36. Nat Commun. 2022 Jun 3;13(1):2888 [PMID: 35660724]
  37. Nat Mater. 2018 Dec;17(12):1095-1100 [PMID: 30349031]
  38. Science. 2022 Feb 4;375(6580):533-539 [PMID: 35113713]
  39. Adv Mater. 2022 Dec;34(48):e2108826 [PMID: 35064981]
  40. Nano Converg. 2022 Oct 1;9(1):44 [PMID: 36182997]
  41. Nat Mater. 2023 May;22(5):562-569 [PMID: 37138006]

Grants

  1. RS-2023-00260527/National Research Foundation of Korea (NRF)

Word Cloud

Created with Highcharts 10.0.0reservoirARCTFTsAnalogcomputingsystemssystemcomponentshardwareintegratedphaseboundarytransistorsMPBTFTsphysicalferroelectricstateattractedattentionowingefficiencyprocessingtemporalinformationHoweverdistinctfunctionalitiesposechallengesimplementationHereinreportfullyleveragesmaterialversatilityferroelectric-to-mixedMPBhafniumzirconiumoxidesontoindium-gallium-zincoxidethin-filmMPB-basednonlinearshort-termmemorycharacteristicsutilizedreservoirsartificialneuronnonvolatilemimicsynapticbehaviorreadoutnetworksFurthermoredouble-gateconfigurationenhancesdifferentiationexpansionprocessesexcitatoryinhibitorypulsesneuronalfunctionalityminimalburdenseamlessintegrationsinglewaferexecutescomplexreal-worldtime-seriespredictionslownormalizedrootmeansquarederror028material-deviceco-optimizationproposedstudypaveswaydevelopmentarea-energy-efficientviamixed

Similar Articles

Cited By

No available data.