MdSVWC1, a new pattern recognition receptor triggers multiple defense mechanisms against invading bacteria in Musca domestica.

Ting Tang, Siyu Sun, Ruirui Wang, Mengnan Li, Yongpeng Wang, Feifei Li, Yun Wang, Fengsong Liu
Author Information
  1. Ting Tang: The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China.
  2. Siyu Sun: The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China.
  3. Ruirui Wang: The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China.
  4. Mengnan Li: The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China.
  5. Yongpeng Wang: The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China.
  6. Feifei Li: The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China.
  7. Yun Wang: The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China.
  8. Fengsong Liu: The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China. liufengsong@hbu.edu.cn. ORCID

Abstract

BACKGROUND: Single-domain von Willebrand factor type C (SVWC) constitute a protein family predominantly identified in arthropods, characterized by a SVWC domain and involved in diverse physiological processes such as host defense, stress resistance, and nutrient metabolism. Nevertheless, the physiological mechanisms underlying these functions remain inadequately comprehended.
RESULTS: A massive expansion of the SVWC gene family in Musca domestica (MdSVWC) was discovered, with a count of 35. MdSVWC1 was selected as the representative of the SVWC family for functional analysis, which led to the identification of the immune function of MdSVWC1 as a novel pattern recognition receptor. MdSVWC1 is highly expressed in both the fat body and intestines and displays acute induction upon bacterial infection. Recombinant MdSVWC1 binds to surfaces of both bacteria and yeast through the recognition of multiple pathogen-associated molecular patterns and exhibits Ca-dependent agglutination activity. MdSVWC1 mutant flies exhibited elevated mortality and hindered bacterial elimination following bacterial infection as a result of reduced hemocyte phagocytic capability and weakened expression of antimicrobial peptide (AMP) genes. In contrast, administration of recombinant MdSVWC1 provided protection to flies from bacterial challenges by promoting phagocytosis and AMP genes expression, thereby preventing bacterial colonization. MdSPN16, a serine protease inhibitor, was identified as a target protein of MdSVWC1. It was postulated that the interaction of MdSVWC1 with MdSPN16 would result in the activation of an extracellular proteolytic cascade, which would then initiate the Toll signaling pathway and facilitate the expression of AMP genes.
CONCLUSIONS: MdSVWC1 displays activity as a soluble pattern recognition receptor that regulates cellular and humoral immunity by recognizing microbial components and facilitating host defense.

Keywords

References

  1. J Biol Chem. 2020 Jul 24;295(30):10468-10477 [PMID: 32532819]
  2. Annu Rev Immunol. 2007;25:697-743 [PMID: 17201680]
  3. J Biol Chem. 2014 Jan 24;289(4):2405-14 [PMID: 24324258]
  4. Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2119109119 [PMID: 35286208]
  5. J Environ Sci Health B. 2007 May;42(4):453-69 [PMID: 17474025]
  6. Nat Rev Immunol. 2007 Nov;7(11):862-74 [PMID: 17948019]
  7. Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18915-20 [PMID: 23027947]
  8. BMC Biol. 2018 May 31;16(1):60 [PMID: 29855367]
  9. Nat Rev Immunol. 2011 Nov 11;11(12):837-51 [PMID: 22076558]
  10. Cell. 2006 Feb 24;124(4):783-801 [PMID: 16497588]
  11. Insect Biochem Mol Biol. 2015 Jul;62:38-50 [PMID: 25701384]
  12. Trends Endocrinol Metab. 2012 Jan;23(1):23-31 [PMID: 22036528]
  13. Results Immunol. 2012 Mar 30;2:72-82 [PMID: 24371569]
  14. Dev Comp Immunol. 2020 Jan;102:103468 [PMID: 31430488]
  15. Insect Mol Biol. 2017 Jun;26(3):308-316 [PMID: 28168773]
  16. Mol Biol Evol. 2017 Apr 1;34(4):857-872 [PMID: 28087775]
  17. Int J Biol Macromol. 2024 Apr;264(Pt 2):130631 [PMID: 38453114]
  18. Insect Biochem Mol Biol. 2017 Dec;91:10-20 [PMID: 29074090]
  19. BMC Biol. 2017 Sep 5;15(1):79 [PMID: 28874153]
  20. Nat Immunol. 2008 Dec;9(12):1425-32 [PMID: 18953338]
  21. Fish Shellfish Immunol. 2020 May;100:272-282 [PMID: 32142875]
  22. Sci Rep. 2021 Feb 3;11(1):2934 [PMID: 33536457]
  23. Antimicrob Agents Chemother. 2004 Nov;48(11):4414-21 [PMID: 15504871]
  24. Mol Immunol. 2015 Oct;67(2 Pt B):465-74 [PMID: 26296288]
  25. FEBS J. 2021 Jul;288(13):3928-3947 [PMID: 33021015]
  26. Insect Sci. 2023 Aug;30(4):1092-1104 [PMID: 36464632]
  27. Mol Cell Biol. 2011 Jul;31(14):2960-72 [PMID: 21576362]
  28. Front Microbiol. 2015 Jan 28;6:19 [PMID: 25674081]
  29. Proc Natl Acad Sci U S A. 2023 Aug 15;120(33):e2211019120 [PMID: 37552757]
  30. PLoS One. 2014 Aug 19;9(8):e104867 [PMID: 25137050]
  31. Nat Immunol. 2008 Aug;9(8):908-16 [PMID: 18604211]
  32. Immunity. 2001 Dec;15(6):1027-38 [PMID: 11754822]
  33. Int J Biol Macromol. 2023 Dec 31;253(Pt 2):126707 [PMID: 37673160]
  34. Nat Methods. 2008 Jul;5(7):621-8 [PMID: 18516045]
  35. FEBS Lett. 2007 Nov 13;581(27):5268-74 [PMID: 18028914]
  36. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  37. Arch Insect Biochem Physiol. 2024 Jan;115(1):e22071 [PMID: 38288483]
  38. Expert Rev Mol Med. 2008 Jun 13;10:e17 [PMID: 18549522]
  39. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15119-24 [PMID: 11742098]
  40. FASEB J. 2004 May;18(7):845-7 [PMID: 15033923]
  41. EMBO J. 2013 May 29;32(11):1626-38 [PMID: 23652443]
  42. Nature. 2003 Nov 6;426(6962):33-8 [PMID: 14603309]
  43. Curr Opin Immunol. 2008 Oct;20(5):530-7 [PMID: 18555676]
  44. Sci Rep. 2016 Aug 26;6:32175 [PMID: 27562645]
  45. Annu Rev Immunol. 2015;33:257-90 [PMID: 25581309]
  46. PeerJ. 2016 Jan 19;4:e1582 [PMID: 26819844]
  47. Adv Exp Med Biol. 2020;1204:129-140 [PMID: 32152945]

MeSH Term

Animals
Houseflies
Receptors, Pattern Recognition
Insect Proteins
Phagocytosis
Immunity, Innate
Antimicrobial Peptides

Chemicals

Receptors, Pattern Recognition
Insect Proteins
Antimicrobial Peptides

Word Cloud

Created with Highcharts 10.0.0MdSVWC1recognitionbacterialSVWCreceptorproteinfamilydefenseMuscadomesticapatternexpressionAMPgenesimmunityvonWillebrandfactoridentifiedphysiologicalhostmechanismsdisplaysinfectionbacteriamultipleactivityfliesresultMdSPN16BACKGROUND:Single-domaintypeCconstitutepredominantlyarthropodscharacterizeddomaininvolveddiverseprocessesstressresistancenutrientmetabolismNeverthelessunderlyingfunctionsremaininadequatelycomprehendedRESULTS:massiveexpansiongeneMdSVWCdiscoveredcount35selectedrepresentativefunctionalanalysisledidentificationimmunefunctionnovelhighlyexpressedfatbodyintestinesacuteinductionuponRecombinantbindssurfacesyeastpathogen-associatedmolecularpatternsexhibitsCa-dependentagglutinationmutantexhibitedelevatedmortalityhinderedeliminationfollowingreducedhemocytephagocyticcapabilityweakenedantimicrobialpeptidecontrastadministrationrecombinantprovidedprotectionchallengespromotingphagocytosistherebypreventingcolonizationserineproteaseinhibitortargetpostulatedinteractionactivationextracellularproteolyticcascadeinitiateTollsignalingpathwayfacilitateCONCLUSIONS:solubleregulatescellularhumoralrecognizingmicrobialcomponentsfacilitatingnewtriggersinvadingCellularHumoralPatternSingleC-domain

Similar Articles

Cited By