Effect of Salinity and Salmon Pituitary Extract on the Expression of Reproduction and/or Salinity-Related Genes in the Pituitary Cells of Japaneses Eel.

Seong Hee Mun, Joon Yeong Kwon
Author Information
  1. Seong Hee Mun: Department of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Korea. ORCID
  2. Joon Yeong Kwon: Department of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Korea. ORCID

Abstract

Artificial sexual maturation of eel () involves rearing in seawater and injecting salmon pituitary extract (SPE). The salinity of seawater and components of SPE influence hormonal activities of the eel pituitary, leading to gonad development. This study investigated the direct effects of salinity change and SPE treatment on the eel pituitary gland using primary cell cultures. Pituitary cells were cultured into four experimental groups: control culture (control), SPE-treated culture (SPE), NaCl-treated culture (NaCl) and NaCl+SPE treated culture (NaCl+SPE). We investigated the expression of genes presumably related to reproduction and/or salinity, including luteinizing hormone (), follicle stimulating hormone (), progesterone receptor-like (), prolactin (), dopamine receptor D4 (), neuropeptide B/W receptor 2 () and relaxin family peptide receptor 3-2b (). Gene expression analysis revealed significant upregulation of LH�� in SPE and NaCl+SPE groups compared to control and NaCl (<0.05). FSH�� expression did not show any significant changes. PRL showed a significant decrease in the NaCl group (<0.05). , and displayed the highest expression in the control group, with downregulation observed in all treatment groups (NaCl, SPE, and NaCl+SPE) (<0.05). This study demonstrated the direct effects of salinity changes and SPE treatment on the eel pituitary. Results from this study also suggest that salinity change is necessary but work together with SPE to induce reproductive process, and that , and genes are obviously associated with reproduction and salinity changes in eels.

Keywords

References

  1. Peptides. 2010 Jun;31(6):1124-30 [PMID: 20214940]
  2. Biol Reprod. 2010 Jan;82(1):171-81 [PMID: 19741208]
  3. Gen Comp Endocrinol. 2007 Aug-Sep;153(1-3):333-43 [PMID: 17418843]
  4. Fish Physiol Biochem. 2017 Feb;43(1):203-216 [PMID: 27573345]
  5. Front Endocrinol (Lausanne). 2018 Jan 08;8:353 [PMID: 29375473]
  6. Gen Comp Endocrinol. 2018 May 15;261:97-103 [PMID: 29481768]
  7. Gen Comp Endocrinol. 2014 Sep 1;205:197-206 [PMID: 24973563]
  8. Comp Biochem Physiol A Mol Integr Physiol. 2010 Nov;157(3):260-5 [PMID: 20647048]
  9. Steroids. 2002 May;67(6):511-7 [PMID: 11960629]
  10. Gen Comp Endocrinol. 2011 Jul 1;172(3):430-9 [PMID: 21530530]
  11. Gen Comp Endocrinol. 1994 Feb;93(2):192-6 [PMID: 8174925]
  12. Ann Endocrinol (Paris). 1981 Apr-Jun;42(2):159-68 [PMID: 7294717]
  13. Comp Biochem Physiol A Mol Integr Physiol. 2008 Dec;151(4):533-41 [PMID: 18687408]
  14. Gen Comp Endocrinol. 2009 Mar;161(1):153-7 [PMID: 18957293]
  15. J Reprod Fertil Suppl. 1995;49:285-96 [PMID: 7623320]
  16. PLoS One. 2020 Jul 7;15(7):e0235617 [PMID: 32634160]
  17. Endocrinology. 2003 Nov;144(11):4729-33 [PMID: 12959997]
  18. Gen Comp Endocrinol. 2009 Jan 1;160(1):67-75 [PMID: 19027016]
  19. Gen Comp Endocrinol. 2010 Aug 1;168(1):95-102 [PMID: 20406642]
  20. Dev Reprod. 2022 Mar;26(1):13-21 [PMID: 35528319]
  21. Endocr Rev. 2004 Apr;25(2):205-34 [PMID: 15082520]
  22. Sci Rep. 2016 Nov 18;6:37535 [PMID: 27857228]
  23. Zoolog Sci. 2011 Mar;28(3):180-8 [PMID: 21385058]
  24. J Vis Exp. 2018 Aug 28;(138): [PMID: 30222142]
  25. Biol Reprod. 2003 Feb;68(2):588-94 [PMID: 12533423]
  26. Endocrinology. 2010 May;151(5):2200-10 [PMID: 20189998]
  27. Int J Mol Sci. 2021 Jun 17;22(12): [PMID: 34204216]
  28. Biol Reprod. 2004 Nov;71(5):1491-500 [PMID: 15229141]
  29. Am J Physiol Endocrinol Metab. 2008 Aug;295(2):E278-86 [PMID: 18492777]
  30. J Neuroendocrinol. 2004 Oct;16(10):842-9 [PMID: 15500544]
  31. Am J Physiol Regul Integr Comp Physiol. 2005 Jun;288(6):R1727-32 [PMID: 15886360]
  32. Endocr Rev. 1998 Jun;19(3):225-68 [PMID: 9626554]
  33. Comp Biochem Physiol A Mol Integr Physiol. 2011 Feb;158(2):194-200 [PMID: 21056111]
  34. Am J Physiol Regul Integr Comp Physiol. 2004 Aug;287(2):R250-61 [PMID: 15271674]
  35. Ann N Y Acad Sci. 2005 Apr;1040:9-21 [PMID: 15891002]
  36. Neuroendocrinology. 1992 Mar;55(3):290-300 [PMID: 1354335]
  37. Gen Comp Endocrinol. 1996 Oct;104(1):103-15 [PMID: 8921361]
  38. Neuroendocrinology. 1987 Jun;45(6):451-8 [PMID: 2886934]
  39. Endocrinology. 2016 Sep;157(9):3562-76 [PMID: 27399877]
  40. Endocrinology. 2015 Aug;156(8):2934-48 [PMID: 25965960]

Word Cloud

Created with Highcharts 10.0.0SPEsalinitycultureexpressioneelpituitaryPituitarycontrolNaClNaCl+SPEstudytreatmentreceptorsignificant<005changesmaturationseawaterinvestigateddirecteffectschangecellgenesreproductionand/orhormoneGenegroupsgroupEelArtificialsexualinvolvesrearinginjectingsalmonextractcomponentsinfluencehormonalactivitiesleadinggonaddevelopmentglandusingprimaryculturescellsculturedfourexperimentalgroups:SPE-treatedNaCl-treatedtreatedpresumablyrelatedincludingluteinizingfolliclestimulatingprogesteronereceptor-likeprolactindopamineD4neuropeptideB/W2relaxinfamilypeptide3-2banalysisrevealedupregulationLH��comparedFSH��showPRLshoweddecreasedisplayedhighestdownregulationobserveddemonstratedResultsalsosuggestnecessaryworktogetherinducereproductiveprocessobviouslyassociatedeelsEffectSalinitySalmonExtractExpressionReproductionSalinity-RelatedGenesCellsJapanesesPrimarySexual

Similar Articles

Cited By

No available data.