The dynamic immune response of the liver and spleen in leopard coral grouper () to infection based on transcriptome analysis.

Yang Liu, Sheng Lu, Mengqi Guo, Ziyuan Wang, Bowen Hu, Bo Zhou, Songlin Chen
Author Information
  1. Yang Liu: State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China.
  2. Sheng Lu: State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China.
  3. Mengqi Guo: State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China.
  4. Ziyuan Wang: State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China.
  5. Bowen Hu: State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China.
  6. Bo Zhou: Wanning Linlan Aquaculture Co., LTD, Wanning, Hainan, China.
  7. Songlin Chen: State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China.

Abstract

Leopard coral grouper () is one of the most important cultured fish in the Pacific and Indian oceans. is a serious pathogen causing serious skin ulceration and high mortality in . To gain more insight into the tissue-specific and dynamic immune regulation process of in response to infection, RNA sequencing (RNA-seq) was used to examine the transcriptome profiles in the spleen and liver at 0, 6, 12, 24, 48, and 72 h post-infection. The upregulated differentially expressed genes (DEGs) were predominantly involved in the immune response in the spleen and liver at the early infection stage (6-12 h), and downregulated DEGs were mainly involved in metabolic processes in the liver at the early and middle infection stage (6-48 h). Moreover, an overview of the immune response of against was exhibited including innate and adaptive immune-related pathways. Afterwards, the results of WGCNA analysis in the spleen indicated that TAP2, IRF1, SOCS1, and CFLAR were the hub genes closely involved in immune regulation in the gene co-expression network. This study provides a global picture of -induced gene expression profiles of at the transcriptome level and uncovers a set of key immune pathways and genes closely linked to infection, which will lay a foundation for further study the immune regulation of bacterial diseases in .

Keywords

References

  1. Biol Chem. 2015 Sep;396(9-10):1059-72 [PMID: 25781678]
  2. Fish Shellfish Immunol. 2021 Apr;111:208-219 [PMID: 33577877]
  3. Front Immunol. 2019 Oct 10;10:2292 [PMID: 31649660]
  4. Dev Comp Immunol. 2021 Sep;122:104110 [PMID: 33933533]
  5. Fish Shellfish Immunol. 2019 Nov;94:122-131 [PMID: 31491527]
  6. Comp Biochem Physiol B Biochem Mol Biol. 2023 Jan;263:110784 [PMID: 35931313]
  7. Fish Shellfish Immunol. 2019 Jan;84:998-1006 [PMID: 30399403]
  8. Front Immunol. 2020 Apr 02;11:502 [PMID: 32300342]
  9. Fish Shellfish Immunol. 2023 Nov;142:109117 [PMID: 37778738]
  10. Fish Shellfish Immunol. 2021 Dec;119:51-59 [PMID: 34592473]
  11. Dev Comp Immunol. 2013 Mar;39(3):234-54 [PMID: 23116964]
  12. Dev Comp Immunol. 2011 Nov;35(11):1173-81 [PMID: 21540052]
  13. Sci Rep. 2018 Aug 20;8(1):12426 [PMID: 30127367]
  14. Fish Shellfish Immunol. 2023 Jan;132:108461 [PMID: 36462744]
  15. Dev Comp Immunol. 2017 Feb;67:66-76 [PMID: 27818171]
  16. Mar Biotechnol (NY). 2018 Apr;20(2):246-256 [PMID: 29516376]
  17. Dev Comp Immunol. 2015 Dec;53(2):385-91 [PMID: 26187301]
  18. Comp Biochem Physiol B Biochem Mol Biol. 2020 Mar;241:110393 [PMID: 31866568]
  19. Mol Ecol Resour. 2020 Sep;20(5):1403-1413 [PMID: 32521104]
  20. Fish Shellfish Immunol. 2022 Dec;131:707-717 [PMID: 36309325]
  21. Fish Shellfish Immunol. 2015 Oct;46(2):468-76 [PMID: 26093210]
  22. Biomed Pharmacother. 2019 Sep;117:109155 [PMID: 31387178]
  23. Fish Shellfish Immunol. 2022 Mar;122:38-47 [PMID: 35085737]
  24. Fish Shellfish Immunol. 2016 Dec;59:115-122 [PMID: 27729274]
  25. Nat Immunol. 2017 Jul 19;18(8):826-831 [PMID: 28722720]
  26. Funct Integr Genomics. 2022 Feb;22(1):131-136 [PMID: 34787733]
  27. Int J Biol Macromol. 2024 Jan;255:128192 [PMID: 37979760]
  28. Mar Biotechnol (NY). 2024 Aug;26(4):790-809 [PMID: 39042324]
  29. Immunol Rev. 2018 Jan;281(1):8-27 [PMID: 29247995]
  30. Dev Comp Immunol. 2010 Mar;34(3):352-9 [PMID: 19941893]
  31. J Fish Biol. 2020 Oct;97(4):1165-1176 [PMID: 32785930]
  32. Dev Comp Immunol. 2019 Oct;99:103401 [PMID: 31145914]
  33. Cell Metab. 2017 Mar 7;25(3):506-521 [PMID: 28273474]
  34. Nat Immunol. 2010 May;11(5):373-84 [PMID: 20404851]
  35. Int J Biol Macromol. 2021 Jan 15;167:719-725 [PMID: 33279564]
  36. Dev Comp Immunol. 2001 Oct-Dec;25(8-9):713-23 [PMID: 11602192]
  37. Microb Pathog. 2020 Dec;149:104527 [PMID: 32980468]
  38. Genomics. 2022 May;114(3):110357 [PMID: 35378240]
  39. Fish Shellfish Immunol. 2017 Aug;67:55-65 [PMID: 28554837]
  40. Dev Comp Immunol. 2014 Jul;45(1):177-89 [PMID: 24582990]
  41. Fish Shellfish Immunol. 2024 Feb;145:109367 [PMID: 38211703]
  42. Fish Shellfish Immunol. 2020 Feb;97:135-145 [PMID: 31846774]
  43. Fish Shellfish Immunol Rep. 2022 Dec 14;4:100077 [PMID: 36589261]
  44. Fish Shellfish Immunol. 2011 Apr-May;30(4-5):1178-83 [PMID: 21320605]
  45. Sci Signal. 2021 Apr 20;14(679): [PMID: 33879603]
  46. Dev Comp Immunol. 2022 Aug;133:104409 [PMID: 35405183]
  47. Int J Mol Sci. 2023 Apr 23;24(9): [PMID: 37175446]
  48. Cell Death Differ. 2015 May;22(5):826-37 [PMID: 25342470]
  49. Fish Shellfish Immunol. 2019 Nov;94:99-112 [PMID: 31476388]
  50. Fish Shellfish Immunol. 2018 Feb;73:84-91 [PMID: 29191796]
  51. Front Genet. 2012 Dec 14;3:267 [PMID: 23413205]
  52. Animals (Basel). 2022 Apr 29;12(9): [PMID: 35565570]
  53. Dev Comp Immunol. 2022 May;130:104355 [PMID: 35077723]
  54. PLoS One. 2015 Jun 26;10(6):e0131504 [PMID: 26114548]
  55. Fish Shellfish Immunol Rep. 2022 Sep 28;3:100068 [PMID: 36569039]
  56. Dev Comp Immunol. 2021 Jun;119:104015 [PMID: 33460679]
  57. Dev Comp Immunol. 2011 Dec;35(12):1336-45 [PMID: 21605591]
  58. Dev Comp Immunol. 2020 Sep;110:103709 [PMID: 32348788]
  59. Fish Shellfish Immunol. 2013 Mar;34(3):892-901 [PMID: 23357024]
  60. Dev Comp Immunol. 2024 Jul;156:105165 [PMID: 38499166]
  61. Dev Comp Immunol. 2021 Jul;120:104049 [PMID: 33609614]

MeSH Term

Animals
Vibrio
Vibrio Infections
Spleen
Fish Diseases
Liver
Gene Expression Profiling
Transcriptome
Fish Proteins
Bass
Immunity, Innate

Chemicals

Fish Proteins

Word Cloud

Created with Highcharts 10.0.0immuneresponseinfectionregulationtranscriptomespleenliverdynamicgenesinvolvedcoralgrouperserioustissue-specificprofilesDEGsearlystagehpathwaysanalysiscloselygenestudyLeopardoneimportantculturedfishPacificIndianoceanspathogencausingskinulcerationhighmortalitygaininsightprocessRNAsequencingRNA-sequsedexamine0612244872 hpost-infectionupregulateddifferentiallyexpressedpredominantly6-12downregulatedmainlymetabolicprocessesmiddle6-48Moreoveroverviewexhibitedincludinginnateadaptiveimmune-relatedAfterwardsresultsWGCNAindicatedTAP2IRF1SOCS1CFLARhubco-expressionnetworkprovidesglobalpicture-inducedexpressionleveluncoverssetkeylinkedwilllayfoundationbacterialdiseasesleopardbasedPlectropomusleopardusVibrioharveyi

Similar Articles

Cited By

No available data.