Nuclei Detection and Segmentation of Histopathological Images Using a Feature Pyramidal Network Variant of a Mask R-CNN.

Vignesh Ramakrishnan, Annalena Artinger, Laura Alexandra Daza Barragan, Jimmy Daza, Lina Winter, Tanja Niedermair, Timo Itzel, Pablo Arbelaez, Andreas Teufel, Cristina L Cotarelo, Christoph Brochhausen
Author Information
  1. Vignesh Ramakrishnan: Institute of Pathology, University Regensburg, Franz-Josef-Strau��-Allee 11, 93053 Regensburg, Germany.
  2. Annalena Artinger: Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany. ORCID
  3. Laura Alexandra Daza Barragan: Center for Research and Formation in Artificial Intelligence (CinfonIA), Universidad de Los Andes, Cra. 1 E No. 19A-40, Bogot�� 111711, Colombia.
  4. Jimmy Daza: Department of Internal Medicine II, Division of Hepatology, Medical Faculty Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany. ORCID
  5. Lina Winter: Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany. ORCID
  6. Tanja Niedermair: Institute of Pathology, University Regensburg, Franz-Josef-Strau��-Allee 11, 93053 Regensburg, Germany.
  7. Timo Itzel: Department of Internal Medicine II, Division of Hepatology, Medical Faculty Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
  8. Pablo Arbelaez: Center for Research and Formation in Artificial Intelligence (CinfonIA), Universidad de Los Andes, Cra. 1 E No. 19A-40, Bogot�� 111711, Colombia. ORCID
  9. Andreas Teufel: Department of Internal Medicine II, Division of Hepatology, Medical Faculty Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany. ORCID
  10. Cristina L Cotarelo: Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
  11. Christoph Brochhausen: Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany. ORCID

Abstract

Cell nuclei interpretation is crucial in pathological diagnostics, especially in tumor specimens. A critical step in computational pathology is to detect and analyze individual nuclear properties using segmentation algorithms. Conventionally, a semantic segmentation network is used, where individual nuclear properties are derived after post-processing a segmentation mask. In this study, we focus on showing that an object-detection-based instance segmentation network, the Mask R-CNN, after integrating it with a Feature Pyramidal Network (FPN), gives mature and reliable results for nuclei detection without the need for additional post-processing. The results were analyzed using the Kumar dataset, a public dataset with over 20,000 nuclei annotations from various organs. The dice score of the baseline Mask R-CNN improved from 76% to 83% after integration with an FPN. This was comparable with the 82.6% dice score achieved by modern semantic-segmentation-based networks. Thus, evidence is provided that an end-to-end trainable detection-based instance segmentation algorithm with minimal post-processing steps can reliably be used for the detection and analysis of individual nuclear properties. This represents a relevant task for research and diagnosis in digital pathology, which can improve the automated analysis of histopathological images.

Keywords

References

  1. IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149 [PMID: 27295650]
  2. IEEE Trans Neural Netw Learn Syst. 2019 Nov;30(11):3212-3232 [PMID: 30703038]
  3. Sci Rep. 2019 Dec 4;9(1):18295 [PMID: 31797882]
  4. Med Image Anal. 2017 Feb;36:135-146 [PMID: 27898306]
  5. Nat Genet. 2021 Aug;53(8):1143-1155 [PMID: 34239132]
  6. J Pers Med. 2022 May 07;12(5): [PMID: 35629179]
  7. Acta Cytol. 2020;64(6):511-519 [PMID: 32570234]
  8. J Pathol Inform. 2016 Jul 26;7:29 [PMID: 27563488]
  9. IEEE Trans Med Imaging. 2017 Jul;36(7):1550-1560 [PMID: 28287963]
  10. Diagn Cytopathol. 2010 May;38(5):382-90 [PMID: 19894267]
  11. J Digit Imaging. 2020 Feb;33(1):231-242 [PMID: 31161430]
  12. J Transl Med. 2019 May 22;17(1):172 [PMID: 31118074]
  13. Front Med. 2020 Aug;14(4):470-487 [PMID: 32728875]
  14. J Am Soc Nephrol. 2021 Oct;32(10):2501-2516 [PMID: 34155061]
  15. J Pathol. 2019 Nov;249(3):286-294 [PMID: 31355445]
  16. IEEE Trans Med Imaging. 2020 Dec;39(12):4124-4136 [PMID: 32746153]

Word Cloud

Created with Highcharts 10.0.0segmentationnucleiMaskR-CNNpathologyindividualnuclearpropertiespost-processingdetectionusingnetworkusedinstanceFeaturePyramidalNetworkFPNresultsdatasetdicescorecananalysisdigitalCellinterpretationcrucialpathologicaldiagnosticsespeciallytumorspecimenscriticalstepcomputationaldetectanalyzealgorithmsConventionallysemanticderivedmaskstudyfocusshowingobject-detection-basedintegratinggivesmaturereliablewithoutneedadditionalanalyzedKumarpublic20000annotationsvariousorgansbaselineimproved76%83%integrationcomparable826%achievedmodernsemantic-segmentation-basednetworksThusevidenceprovidedend-to-endtrainabledetection-basedalgorithmminimalstepsreliablyrepresentsrelevanttaskresearchdiagnosisimproveautomatedhistopathologicalimagesNucleiDetectionSegmentationHistopathologicalImagesUsingVariantartificialintelligencehistopathology

Similar Articles

Cited By