Black Silicon Surface-Enhanced Raman Spectroscopy Biosensors: Current Advances and Prospects.

Yaraslau Padrez, Lena Golubewa
Author Information
  1. Yaraslau Padrez: Department of Molecular Compounds Physics, State Research Institute Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania. ORCID
  2. Lena Golubewa: Department of Molecular Compounds Physics, State Research Institute Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania. ORCID

Abstract

Black silicon was discovered by accident and considered an undesirable by-product of the silicon industry. A highly modified surface, consisting of pyramids, needles, holes, pillars, etc., provides high light absorption from the UV to the NIR range and gives black silicon its color-matte black. Although black silicon has already attracted some interest as a promising material for sensitive sensors, the potential of this material has not yet been fully exploited. Over the past three decades, black silicon has been actively introduced as a substrate for surface-enhanced Raman spectroscopy (SERS)-a molecule-specific vibrational spectroscopy technique-and successful proof-of-concept experiments have been conducted. This review focuses on the current progress in black silicon SERS biosensor fabrication, the recent advances in the design of the surface morphology and an analysis of the relation of surface micro-structuring and SERS efficiency and sensitivity. Much attention is paid to problems of non-invasiveness of the technique and biocompatibility of black silicon, its advantages over other SERS biosensors, cost-effectiveness and reproducibility, as well as the expansion of black silicon applications. The question of existing limitations and ways to overcome them is also addressed.

Keywords

References

  1. Stem Cells Int. 2015;2015:167025 [PMID: 26351461]
  2. ACS Omega. 2021 Jul 12;6(29):18928-18938 [PMID: 34337232]
  3. Nat Biotechnol. 2024 Aug 21;: [PMID: 39169265]
  4. Int J Mol Sci. 2023 Nov 24;24(23): [PMID: 38069007]
  5. J Colloid Interface Sci. 2018 Dec 15;532:464-473 [PMID: 30099309]
  6. Nanomaterials (Basel). 2024 May 28;14(11): [PMID: 38869570]
  7. RSC Adv. 2018 Aug 24;8(52):30049 [PMID: 35557044]
  8. Biosens Bioelectron. 2014 Mar 15;53:37-42 [PMID: 24121206]
  9. Nanoscale. 2023 Mar 9;15(10):4738-4761 [PMID: 36808191]
  10. Sensors (Basel). 2010;10(3):1871-89 [PMID: 21151763]
  11. Analyst. 2024 Jul 8;149(14):3711-3715 [PMID: 38895849]
  12. ACS Appl Mater Interfaces. 2020 Nov 11;12(45):50971-50984 [PMID: 33107725]
  13. Talanta. 2023 Jun 1;258:124408 [PMID: 36871516]
  14. Nature. 2016 Feb 4;530(7588):71-6 [PMID: 26779949]
  15. Anal Chem. 2001 Sep 1;73(17):4268-76 [PMID: 11569819]
  16. Sci Rep. 2017 Jun 30;7(1):4471 [PMID: 28667313]
  17. Phys Chem Chem Phys. 2015 Sep 7;17(33):21294-301 [PMID: 25669424]
  18. Opt Express. 2015 Mar 9;23(5):6763-72 [PMID: 25836894]
  19. Nanomaterials (Basel). 2021 Jul 06;11(7): [PMID: 34361147]
  20. Sci Rep. 2019 Aug 26;9(1):12356 [PMID: 31451702]
  21. Sci Rep. 2018 Feb 14;8(1):3002 [PMID: 29445092]
  22. Front Chem. 2019 Jun 04;7:410 [PMID: 31214580]
  23. Nanomaterials (Basel). 2020 Dec 26;11(1): [PMID: 33375303]
  24. Nanomaterials (Basel). 2022 Aug 10;12(16): [PMID: 36014606]
  25. Spectrochim Acta A Mol Biomol Spectrosc. 2022 Feb 15;267(Pt 2):120542 [PMID: 34749261]
  26. Opt Express. 2015 Sep 21;23(19):24811-21 [PMID: 26406681]
  27. Sci Rep. 2016 Apr 27;6:25134 [PMID: 27118247]
  28. Anal Chem. 2024 Jul 16;96(28):11533-11541 [PMID: 38973171]
  29. Chem Soc Rev. 2008 May;37(5):1025-41 [PMID: 18443687]
  30. Nanotechnology. 2014 Apr 11;25(14):145304 [PMID: 24633089]
  31. Nanoscale Res Lett. 2018 Oct 10;13(1):316 [PMID: 30306413]
  32. Opt Express. 2015 May 18;23(10):12965-78 [PMID: 26074549]
  33. Appl Spectrosc. 2011 Aug;65(8):825-37 [PMID: 21819771]
  34. Commun Biol. 2024 Jul 10;7(1):843 [PMID: 38987326]
  35. Microsyst Nanoeng. 2020 Jun 1;6:47 [PMID: 34567659]
  36. Nanoscale Res Lett. 2012 Aug 23;7(1):477 [PMID: 22916840]
  37. Anal Chem. 2020 Mar 17;92(6):4317-4325 [PMID: 31985206]
  38. Analyst. 2016 Jun 21;141(12):3590-600 [PMID: 27072718]
  39. ACS Appl Nano Mater. 2018 Jan 26;1(1):410-417 [PMID: 31891124]
  40. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 Jul;14(4):e1795 [PMID: 35362261]
  41. Alzheimers Res Ther. 2022 Feb 5;14(1):23 [PMID: 35123548]
  42. Int J Mol Sci. 2022 Feb 26;23(5): [PMID: 35269733]
  43. Nano Lett. 2010 May 12;10(5):1582-8 [PMID: 20423044]
  44. Front Bioeng Biotechnol. 2020 Aug 31;8:894 [PMID: 32984266]
  45. Annu Rev Anal Chem (Palo Alto Calif). 2008;1:601-26 [PMID: 20636091]
  46. Chem Commun (Camb). 2009 Jul 28;(28):4239-41 [PMID: 19585033]
  47. RSC Adv. 2020 Nov 10;10(67):40940-40947 [PMID: 35519192]
  48. Chemphyschem. 2012 Apr 23;13(6):1415-20 [PMID: 22407606]
  49. ACS Appl Mater Interfaces. 2022 Aug 10;14(31):36189-36199 [PMID: 35767685]
  50. Anal Chim Acta. 2022 May 29;1209:339250 [PMID: 35569862]
  51. ACS Appl Mater Interfaces. 2024 Aug 7;16(31):41379-41389 [PMID: 39057191]
  52. Nanoscale. 2018 May 24;10(20):9780-9787 [PMID: 29767209]
  53. Materials (Basel). 2023 Feb 27;16(5): [PMID: 36903063]
  54. Opt Express. 2020 Sep 28;28(20):29357-29367 [PMID: 33114837]
  55. Nanoscale. 2016 Jun 9;8(23):11862-9 [PMID: 27230115]
  56. Biomater Sci. 2018 May 29;6(6):1424-1432 [PMID: 29611852]
  57. Mater Today Bio. 2021 Aug 04;11:100125 [PMID: 34485892]
  58. Nanomaterials (Basel). 2020 Apr 05;10(4): [PMID: 32260586]
  59. Organogenesis. 2015;11(1):1-15 [PMID: 25915734]
  60. ACS Sens. 2019 Nov 22;4(11):2879-2884 [PMID: 31601106]
  61. Phys Chem Chem Phys. 2015 Nov 11;17(45):30461-7 [PMID: 26510016]
  62. Nanomaterials (Basel). 2021 Mar 09;11(3): [PMID: 33803099]
  63. Nanoscale. 2017 Sep 14;9(35):13171-13186 [PMID: 28850138]
  64. Appl Spectrosc. 2006 Dec;60(12):322A-334A [PMID: 17217582]
  65. Nanomaterials (Basel). 2020 Nov 06;10(11): [PMID: 33172194]
  66. Free Radic Biol Med. 2023 Feb 20;196:133-144 [PMID: 36649901]
  67. ACS Appl Mater Interfaces. 2018 Feb 7;10(5):5061-5071 [PMID: 29338182]
  68. Nanoscale. 2024 Feb 15;16(7):3293-3323 [PMID: 38273798]
  69. ACS Appl Nano Mater. 2023 Mar 09;6(6):4770-4781 [PMID: 37006910]
  70. Spectrochim Acta A Mol Biomol Spectrosc. 2021 Sep 5;258:119712 [PMID: 33965670]
  71. Biomicrofluidics. 2015 Nov 03;9(6):061101 [PMID: 26576207]
  72. Opt Express. 2019 Feb 4;27(3):3161-3168 [PMID: 30732341]
  73. Small. 2017 Nov;13(43): [PMID: 28902980]
  74. Phys Chem Chem Phys. 2018 Feb 7;20(6):4513-4526 [PMID: 29372919]
  75. Sci Rep. 2017 Jul 4;7(1):4604 [PMID: 28676628]
  76. Aging (Albany NY). 2020 Dec 9;13(2):2231-2250 [PMID: 33318310]
  77. Materials (Basel). 2020 Mar 10;13(5): [PMID: 32164146]
  78. Analyst. 2021 Dec 6;146(24):7645-7652 [PMID: 34806730]
  79. Spectrochim Acta A Mol Biomol Spectrosc. 2019 Jan 5;206:31-36 [PMID: 30077894]
  80. Sci Rep. 2016 Nov 22;6:36836 [PMID: 27872473]
  81. Adv Mater. 2011 Jan 4;23(1):122-6 [PMID: 20979238]
  82. Biophys J. 2018 Feb 6;114(3):675-687 [PMID: 29414713]
  83. Sensors (Basel). 2020 Sep 04;20(18): [PMID: 32899745]
  84. Mater Sci Eng C Mater Biol Appl. 2018 Mar 1;84:208-217 [PMID: 29519430]
  85. ACS Omega. 2023 Feb 23;8(9):8541-8547 [PMID: 36910972]
  86. Talanta. 2023 Aug 1;260:124657 [PMID: 37187030]
  87. Nanotechnology. 2023 Oct 27;35(2): [PMID: 37769640]
  88. Nano Lett. 2011 Jun 8;11(6):2219-24 [PMID: 21604793]
  89. J Phys Chem Lett. 2013 May 2;4(9):1449-52 [PMID: 26282297]
  90. Adv Mater. 2012 Mar 8;24(10):OP11-8 [PMID: 22105972]
  91. Biosens Bioelectron. 2023 May 15;228:115231 [PMID: 36934607]
  92. Nanoscale Res Lett. 2018 Aug 22;13(1):244 [PMID: 30136110]
  93. Nanoscale Res Lett. 2018 Apr 19;13(1):110 [PMID: 29675768]

MeSH Term

Spectrum Analysis, Raman
Silicon
Biosensing Techniques
Surface Properties

Chemicals

Silicon

Word Cloud

Created with Highcharts 10.0.0siliconblackSERSsurfaceRamanspectroscopyBlackmaterialsurface-enhancedsensitivitybiocompatibilitybiosensorsdiscoveredaccidentconsideredundesirableby-productindustryhighlymodifiedconsistingpyramidsneedlesholespillarsetcprovideshighlightabsorptionUVNIRrangegivescolor-matteAlthoughalreadyattractedinterestpromisingsensitivesensorspotentialyetfullyexploitedpastthreedecadesactivelyintroducedsubstrate-amolecule-specificvibrationaltechnique-andsuccessfulproof-of-conceptexperimentsconductedreviewfocusescurrentprogressbiosensorfabricationrecentadvancesdesignmorphologyanalysisrelationmicro-structuringefficiencyMuchattentionpaidproblemsnon-invasivenesstechniqueadvantagescost-effectivenessreproducibilitywellexpansionapplicationsquestionexistinglimitationswaysovercomealsoaddressedSiliconSurface-EnhancedSpectroscopyBiosensors:CurrentAdvancesProspectsenhancementfactor

Similar Articles

Cited By