High-Resolution Magic-Angle Spinning Nuclear Magnetic Resonance Identifies Impairment of Metabolism by T-2 Toxin, in Relation to Toxicity, in Zebrafish Embryo Model.

Ariel Lawson, Mark Annunziato, Narmin Bashirova, Muhamed N Hashem Eeza, Jörg Matysik, A Alia, John P Berry
Author Information
  1. Ariel Lawson: Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA. ORCID
  2. Mark Annunziato: Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA.
  3. Narmin Bashirova: Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany. ORCID
  4. Muhamed N Hashem Eeza: Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany. ORCID
  5. Jörg Matysik: Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany. ORCID
  6. A Alia: Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany. ORCID
  7. John P Berry: Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA. ORCID

Abstract

Among the widespread trichothecene mycotoxins, T-2 toxin is considered the most toxic congener. In the present study, we utilized high-resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR), coupled to the zebrafish () embryo model, as a toxicometabolomics approach to elucidate the cellular, molecular and biochemical pathways associated with T-2 toxicity. Aligned with previous studies in the zebrafish embryo model, exposure to T-2 toxin was lethal in the high parts-per-billion (ppb) range, with a median lethal concentration (LC) of 105 ppb. Exposure to the toxins was, furthermore, associated with system-specific alterations in the production of reactive oxygen species (ROS), including decreased ROS production in the liver and increased ROS in the brain region, in the exposed embryos. Moreover, metabolic profiling based on HRMAS NMR revealed the modulation of numerous, interrelated metabolites, specifically including those associated with (1) phase I and II detoxification, and antioxidant pathways; (2) disruption of the phosphocholine lipids of cell membranes; (3) mitochondrial energy metabolism, including apparent disruption of the tricarboxylic acid (TCA) cycle, and the electron transport chain of oxidative phosphorylation, as well as "upstream" effects on carbohydrate, i.e., glucose metabolism; and (4) several compensatory catabolic pathways. Taken together, these observations enabled development of an integrated, system-level model of T-2 toxicity in relation to human and animal health.

Keywords

References

  1. Sci Total Environ. 2022 Jan 10;803:149858 [PMID: 34482148]
  2. Biochemistry. 2009 Aug 4;48(30):7140-9 [PMID: 19527071]
  3. Drug Metab Rev. 2017 May;49(2):105-138 [PMID: 28266877]
  4. Environ Pollut. 2018 Nov;242(Pt A):500-506 [PMID: 30005262]
  5. Biochim Biophys Acta. 2009 May;1787(5):384-92 [PMID: 19059197]
  6. Sci Total Environ. 2023 Apr 10;868:161737 [PMID: 36693575]
  7. Environ Pollut. 2023 Aug 1;330:121784 [PMID: 37169237]
  8. J Pharmacol Exp Ther. 1986 Mar;236(3):610-4 [PMID: 3081704]
  9. Biochim Biophys Acta. 2013 Mar;1831(3):523-32 [PMID: 23010477]
  10. Toxins (Basel). 2018 Jun 15;10(6): [PMID: 29914090]
  11. Sci Rep. 2017 Dec 11;7(1):17305 [PMID: 29230019]
  12. Int J Biochem Cell Biol. 2010 May;42(5):573-5 [PMID: 20006730]
  13. Biochem Biophys Res Commun. 1988 Mar 15;151(2):809-14 [PMID: 3279955]
  14. Front Physiol. 2021 Nov 10;12:732319 [PMID: 34858200]
  15. Mol Cell Proteomics. 2008 May;7(5):981-94 [PMID: 18212345]
  16. Heliyon. 2022 Jul 20;8(8):e10012 [PMID: 35928103]
  17. Toxins (Basel). 2023 Jun 15;15(6): [PMID: 37368698]
  18. J Neurochem. 1992 Nov;59(5):1609-23 [PMID: 1402908]
  19. Curr Pharm Biotechnol. 2004 Oct;5(5):409-13 [PMID: 15544488]
  20. Bratisl Lek Listy. 2023;124(1):47-52 [PMID: 36519607]
  21. Sci Rep. 2024 Jan 12;14(1):1195 [PMID: 38216675]
  22. Redox Rep. 2020 Dec;25(1):26-32 [PMID: 32290794]
  23. Toxics. 2017 Nov 04;5(4): [PMID: 29113040]
  24. Chem Biol Interact. 2013 Mar 25;203(1):238-44 [PMID: 23220002]
  25. Environ Toxicol Chem. 2024 Apr;43(4):896-914 [PMID: 38411227]
  26. Fish Physiol Biochem. 2020 Dec;46(6):1921-1932 [PMID: 32617788]
  27. Metabolites. 2022 Dec 09;12(12): [PMID: 36557281]
  28. Crit Rev Food Sci Nutr. 2023 Nov;63(33):11668-11678 [PMID: 35791798]
  29. Sci Rep. 2022 Apr 15;12(1):6341 [PMID: 35428752]
  30. Mycotoxin Res. 2020 Feb;36(1):41-62 [PMID: 31346981]
  31. Biochim Biophys Acta. 2013 May;1827(5):578-87 [PMID: 23333272]
  32. Food Chem Toxicol. 2020 Feb;136:111082 [PMID: 31887398]
  33. PLoS One. 2013;8(3):e60484 [PMID: 23544145]
  34. Toxins (Basel). 2016 Feb 05;8(2):40 [PMID: 26861395]
  35. FEBS J. 2019 Nov;286(21):4215-4231 [PMID: 31199573]
  36. Mycotoxin Res. 2016 May;32(2):77-83 [PMID: 26920403]
  37. Drug Chem Toxicol. 2018 Jan;41(1):113-122 [PMID: 28482697]
  38. J Biol Chem. 2012 Aug 3;287(32):27255-64 [PMID: 22689576]
  39. Environ Pollut. 2020 Oct;265(Pt A):114928 [PMID: 32540561]
  40. PLoS One. 2016 Nov 18;11(11):e0166682 [PMID: 27861548]
  41. Toxins (Basel). 2023 Jul 29;15(8): [PMID: 37624238]
  42. Toxins (Basel). 2022 Feb 16;14(2): [PMID: 35202172]
  43. Cell Metab. 2011 Dec 7;14(6):724-38 [PMID: 22152301]
  44. Nature. 2011 Jul 17;476(7359):236-9 [PMID: 21765427]
  45. Brief Funct Genomics. 2014 Mar;13(2):157-71 [PMID: 24397978]
  46. Toxicol Res. 2018 Jul;34(3):249-257 [PMID: 30057699]
  47. Toxins (Basel). 2019 May 08;11(5): [PMID: 31071948]
  48. Molecules. 2021 Nov 14;26(22): [PMID: 34833960]
  49. Oncotarget. 2017 May 16;8(20):33933-33952 [PMID: 28430618]
  50. Arch Toxicol. 2019 Nov;93(11):3041-3056 [PMID: 31570981]
  51. J Biol Chem. 2003 Mar 7;278(10):8516-25 [PMID: 12496265]
  52. PLoS One. 2014 Sep 29;9(9):e108394 [PMID: 25264878]
  53. Environ Toxicol Chem. 2014 Jan;33(1):11-7 [PMID: 24307630]
  54. Ecotoxicol Environ Saf. 2020 Oct 1;202:110909 [PMID: 32800244]
  55. Toxins (Basel). 2023 Apr 23;15(5): [PMID: 37235340]
  56. Zebrafish. 2016 Oct;13(5):456-65 [PMID: 27348393]
  57. Metabolites. 2021 Sep 17;11(9): [PMID: 34564451]
  58. J Toxicol Sci. 2013;38(3):495-502 [PMID: 23719927]
  59. Molecules. 2023 Mar 06;28(5): [PMID: 36903658]
  60. Environ Sci Pollut Res Int. 2008 Jul;15(5):394-404 [PMID: 18575912]
  61. Food Chem Toxicol. 2020 Nov;145:111676 [PMID: 32805342]
  62. Neuroscience. 2020 Jul 15;439:137-145 [PMID: 31200105]
  63. Biochem Soc Trans. 2008 Oct;36(Pt 5):976-80 [PMID: 18793173]
  64. Mol Cell Biochem. 2020 Apr;467(1-2):1-12 [PMID: 31813106]
  65. Toxicol Appl Pharmacol. 2008 Nov 1;232(3):376-83 [PMID: 18706436]
  66. Nat Rev Neurosci. 2018 Jan 19;19(2):63-80 [PMID: 29348666]
  67. J Environ Sci (China). 2014 Apr 1;26(4):917-25 [PMID: 25079423]
  68. Hum Exp Toxicol. 2012 Dec;31(12):1214-27 [PMID: 22751200]
  69. Toxins (Basel). 2020 Jan 10;12(1): [PMID: 31936883]

Grants

  1. NIFA-2017-67018-26229/United States Department of Agriculture

MeSH Term

Animals
Zebrafish
T-2 Toxin
Embryo, Nonmammalian
Magnetic Resonance Spectroscopy
Reactive Oxygen Species
Metabolomics

Chemicals

T-2 Toxin
Reactive Oxygen Species

Word Cloud

Created with Highcharts 10.0.0T-2toxinNMRzebrafishmodelpathwaysassociatedROSincludingtrichothecenenuclearmagneticresonanceHRMASembryotoxicitylethalppbproductiondisruptionmetabolismAmongwidespreadmycotoxinsconsideredtoxiccongenerpresentstudyutilizedhigh-resolutionmagic-anglespinningcoupledtoxicometabolomicsapproachelucidatecellularmolecularbiochemicalAlignedpreviousstudiesexposurehighparts-per-billionrangemedianconcentrationLC105Exposuretoxinsfurthermoresystem-specificalterationsreactiveoxygenspeciesdecreasedliverincreasedbrainregionexposedembryosMoreovermetabolicprofilingbasedrevealedmodulationnumerousinterrelatedmetabolitesspecifically1phaseIIdetoxificationantioxidant2phosphocholinelipidscellmembranes3mitochondrialenergyapparenttricarboxylicacidTCAcycleelectrontransportchainoxidativephosphorylationwell"upstream"effectscarbohydrateieglucose4severalcompensatorycatabolicTakentogetherobservationsenableddevelopmentintegratedsystem-levelrelationhumananimalhealthHigh-ResolutionMagic-AngleSpinningNuclearMagneticResonanceIdentifiesImpairmentMetabolismToxinRelationToxicityZebrafishEmbryoModelmetabolomics

Similar Articles

Cited By

No available data.